Monolithic Quantum Processors in Production FDSOI and FinFET CMOS Technologies

生产中的单片量子处理器 FDSOI 和 FinFET CMOS 技术

基本信息

  • 批准号:
    RTI-2023-00256
  • 负责人:
  • 金额:
    $ 10.93万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Research Tools and Instruments
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

This equipment application aims to obtain a high sensitivity (fA) and high precision (10uV) semiconductor parameter analyzer suitable for testing novel and patented monolithically integrated quantum processors (QPs) consisting of SiGe hole-spin qubit arrays with up to 1024 qubits and associated millimetre-wave spin-manipulation and readout electronics. The research is funded by NSERC and supported by Ciena Canada and GlobalFoundries with in-kind fabrication runs in 3nm FinFET and 22nm FDSOI technologies valued at over $300,000 per year. It addresses the continued scaling of computational power by exploring novel atomic-scale quantum-computing (QC) hardware in CMOS foundry processes, which can be integrated on the same die with classical CMOS logic and millimetre-wave analog electronics. This equipment will be used daily by all graduate students in the applicant's research group. There is no equivalent instrument in the ECE Department at U of T. The IT industry is at a critical moment. The building block of classical computers, the CMOS transistor, has reached its fundamental limits. QPs are now the front runner to take the baton from classical digital processors and are drawing large research investments from tech companies (Google, Honeywell, Intel, IBM, Microsoft). In the next 5-10 years, QPs promise to transform computational medicine through exponential or polynomial speedups. For instance, with QPs we could elucidate the reaction pathways of nitrogenase in less than four days; a classical computer simulation would take billions of years. However, today's QPs have too few gate operations to solve practical problems, and yet are too large to be deployed in workplaces. Our elevated-temperature (>4 Kelvin) QPs will revolutionize computing. The 100x increase in operating temperature over current QPs will enable greatly increased processor complexity and compute power while reducing operating and power costs. Within 10 years, such a quantum computer will be about the size of a desktop computer, small enough to be deployed in workplaces, hospitals, doctors' offices, and homes. QC is also anticipated to fundamentally change the way information is transmitted and processed in the next decade, an area of strategic importance for telecom equipment companies like Ciena Canada. The telecommunications sector could make use of QPs for many applications in the future, including quantum cryptography, network optimization, quantum networking in terrestrial fibre networks, and AI applications. NRC projects that 229,000 Canadians will be employed in quantum R&D by 2040. Thus, our world-class technology and research and the requested equipment will enable global leadership in QC and its application in telecom and medicine by allowing us to be among the first to demonstrate low-cost, elevated temperature, monolithic QPs, creating new products and business opportunities, training HQP, and helping to solve so-far intractable problems to the benefit of Canadians.
该设备应用旨在获得高灵敏度(fA)和高精度(10 uV)的半导体参数分析仪,适用于测试新型专利单片集成量子处理器(QP),该处理器由具有高达1024个量子位的SiGe空穴自旋量子位阵列和相关的毫米波自旋操纵和读出电子器件组成。该研究由NSERC资助,并得到Ciena Canada和GlobalFoundries的支持,采用3 nm FinFET和22 nm FDSOI技术进行实物制造,每年价值超过30万美元。它通过探索CMOS铸造工艺中的新型原子级量子计算(QC)硬件来解决计算能力的持续扩展问题,这些硬件可以与经典CMOS逻辑和毫米波模拟电子器件集成在同一芯片上。申请人研究小组的所有研究生将每天使用该设备。在多伦多大学的ECE系没有类似的仪器。 IT行业正处于关键时刻。经典计算机的基石CMOS晶体管已经达到了它的基本极限。QP现在是从经典数字处理器手中接过接力棒的领跑者,并吸引了科技公司(谷歌,霍尼韦尔,英特尔,IBM,微软)的大量研究投资。在接下来的5-10年里,量子点有望通过指数或多项式加速来改变计算医学。例如,使用量子点,我们可以在不到四天的时间内阐明固氮酶的反应途径;经典的计算机模拟需要数十亿年。然而,今天的QP具有太少的门操作以解决实际问题,并且还太大而不能部署在工作场所中。我们的高温(>4开尔文)量子点将彻底改变计算。与当前QP相比,工作温度提高了100倍,这将大大提高处理器复杂性和计算能力,同时降低操作和功耗成本。在10年内,这样的量子计算机将与台式计算机大小相当,小到足以部署在工作场所、医院、医生办公室和家庭中。QC还有望在未来十年从根本上改变信息传输和处理的方式,这对Ciena Canada等电信设备公司来说是一个具有战略重要性的领域。未来,电信部门可以将量子点用于许多应用,包括量子密码学、网络优化、地面光纤网络中的量子网络以及人工智能应用。NRC预计,到2040年,将有22.9万加拿大人从事量子研发工作。因此,我们世界一流的技术和研究以及所需的设备将使我们成为首批展示低成本、高温、单片QP的公司之一,从而在QC及其在电信和医学中的应用方面处于全球领先地位,创造新产品和商业机会,培训HQP,并帮助解决迄今为止棘手的问题,使加拿大人受益。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Voinigescu, Sorin其他文献

Voinigescu, Sorin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Voinigescu, Sorin', 18)}}的其他基金

Atomic-Scale Electronics
原子级电子学
  • 批准号:
    RGPIN-2018-05969
  • 财政年份:
    2022
  • 资助金额:
    $ 10.93万
  • 项目类别:
    Discovery Grants Program - Individual
Atomic-Scale Electronics
原子级电子学
  • 批准号:
    RGPIN-2018-05969
  • 财政年份:
    2021
  • 资助金额:
    $ 10.93万
  • 项目类别:
    Discovery Grants Program - Individual
Atomic-Scale Electronics
原子级电子学
  • 批准号:
    RGPIN-2018-05969
  • 财政年份:
    2020
  • 资助金额:
    $ 10.93万
  • 项目类别:
    Discovery Grants Program - Individual
Atomic-Scale Electronics
原子级电子学
  • 批准号:
    RGPIN-2018-05969
  • 财政年份:
    2019
  • 资助金额:
    $ 10.93万
  • 项目类别:
    Discovery Grants Program - Individual
Silicon quantum computing hardware in nanoscale CMOS
纳米级 CMOS 硅量子计算硬件
  • 批准号:
    506293-2017
  • 财政年份:
    2019
  • 资助金额:
    $ 10.93万
  • 项目类别:
    Strategic Projects - Group
Atomic-Scale Electronics
原子级电子学
  • 批准号:
    RGPIN-2018-05969
  • 财政年份:
    2018
  • 资助金额:
    $ 10.93万
  • 项目类别:
    Discovery Grants Program - Individual
Cryogenic probestation for mm-wave monolithic quantum computing integrated circuits
毫米波单片量子计算集成电路低温探测
  • 批准号:
    RTI-2019-00550
  • 财政年份:
    2018
  • 资助金额:
    $ 10.93万
  • 项目类别:
    Research Tools and Instruments
Silicon quantum computing hardware in nanoscale CMOS
纳米级 CMOS 硅量子计算硬件
  • 批准号:
    506293-2017
  • 财政年份:
    2018
  • 资助金额:
    $ 10.93万
  • 项目类别:
    Strategic Projects - Group
2-D Crystal Electronics for Energy-Efficient Terabit Communication Links
用于节能太比特通信链路的二维晶体电子器件
  • 批准号:
    262288-2013
  • 财政年份:
    2017
  • 资助金额:
    $ 10.93万
  • 项目类别:
    Discovery Grants Program - Individual
Silicon quantum computing hardware in nanoscale CMOS
纳米级 CMOS 硅量子计算硬件
  • 批准号:
    506293-2017
  • 财政年份:
    2017
  • 资助金额:
    $ 10.93万
  • 项目类别:
    Strategic Projects - Group

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Simulation and certification of the ground state of many-body systems on quantum simulators
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:
Mapping Quantum Chromodynamics by Nuclear Collisions at High and Moderate Energies
  • 批准号:
    11875153
  • 批准年份:
    2018
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目

相似海外基金

A prototype interface between neutral-atom quantum processors and superconducting circuits
中性原子量子处理器和超导电路之间的原型接口
  • 批准号:
    EP/Y022688/1
  • 财政年份:
    2024
  • 资助金额:
    $ 10.93万
  • 项目类别:
    Research Grant
Developing a photonic interface for superconducting quantum processors
开发超导量子处理器的光子接口
  • 批准号:
    2734696
  • 财政年份:
    2022
  • 资助金额:
    $ 10.93万
  • 项目类别:
    Studentship
Cryogenic Neutral Atom Arrays for Quantum Processors
用于量子处理器的低温中性原子阵列
  • 批准号:
    2210527
  • 财政年份:
    2022
  • 资助金额:
    $ 10.93万
  • 项目类别:
    Continuing Grant
Collaborative Research: CIF: FET: Small: Realizing Joint Detection Receivers for Quantum-enhanced Optical Communications using Photonic NISQ-era Quantum Processors
合作研究:CIF:FET:小型:使用光子 NISQ 时代量子处理器实现量子增强光通信的联合检测接收器
  • 批准号:
    2204985
  • 财政年份:
    2022
  • 资助金额:
    $ 10.93万
  • 项目类别:
    Standard Grant
Quantum information processing via photonically connected, modular neutral-atom processors
通过光子连接的模块化中性原子处理器进行量子信息处理
  • 批准号:
    568673-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 10.93万
  • 项目类别:
    Alliance Grants
Applications of quantum information processors
量子信息处理器的应用
  • 批准号:
    2759360
  • 财政年份:
    2022
  • 资助金额:
    $ 10.93万
  • 项目类别:
    Studentship
Algorithm-oriented designs for superconducting quantum processors
面向算法的超导量子处理器设计
  • 批准号:
    535314-2019
  • 财政年份:
    2021
  • 资助金额:
    $ 10.93万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Quantum information processing via photonically connected, modular neutral-atom processors
通过光子连接的模块化中性原子处理器进行量子信息处理
  • 批准号:
    568673-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 10.93万
  • 项目类别:
    Alliance Grants
Collaborative Research: CIF: FET: Small: Realizing Joint Detection Receivers for Quantum-enhanced Optical Communications using Photonic NISQ-era Quantum Processors
合作研究:CIF:FET:小型:使用光子 NISQ 时代量子处理器实现量子增强光通信的联合检测接收器
  • 批准号:
    2114115
  • 财政年份:
    2021
  • 资助金额:
    $ 10.93万
  • 项目类别:
    Standard Grant
Quantum Metrology Protocols and Parallel Quantum Circuits for Silicon NISQ processors
用于硅 NISQ 处理器的量子计量协议和并行量子电路
  • 批准号:
    2602520
  • 财政年份:
    2021
  • 资助金额:
    $ 10.93万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了