Improved hydrogen-steam electrodes for solid oxide electrolysers
用于固体氧化物电解槽的改进氢蒸汽电极
基本信息
- 批准号:EP/W032589/1
- 负责人:
- 金额:$ 28.99万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2022
- 资助国家:英国
- 起止时间:2022 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Hydrogen is increasingly emerging as an attractive low carbon energy carrier to support the de-carbonisation of hard to address sectors such as industrial heat, chemicals, heavy duty vehicles, shipping, and trains. This is being increasingly recognised globally, along with the launch of a European hydrogen strategy, the inclusion of hydrogen at scale in the November 2020 UK Government Green plan, and the recent launch of the UK Hydrogen strategy. Much of the focus of these strategies is on the production of 'green' hydrogen using electrolysis, driven by renewable electricity. Today, 96% of hydrogen globally is produced from unabated fossil fuels, with 6% of global natural gas and 2% of coal consumption going to hydrogen production, primarily for petrochemicals. Currently green hydrogen is the most expensive form of hydrogen, with around 60-80% of the cost coming from the cost of the electrical power input. A critical factor that influences this is the efficiency of the electrolyser itself. Electrolysers fall into one of two categories: low-temperature (70-120C) and high temperature (600-850C). While low temperature electrolyser systems based around alkaline or polymer technology are already mature and commercially available, their relatively modest efficiency (around 65%) means that the solid oxide electrolyser (SOEC), which operates at much higher temperatures (600-900C) where both the thermodynamics and kinetics of water splitting are more favourable, is of growing interest. Indeed, high temperature steam electrolysis driven by renewable electricity is the most efficient way to produce hydrogen, with electrical efficiencies for steam electrolysis to hydrogen of over 90%, and with the possibility of integrating waste heat into the endothermic process to further reduce the electrical energy requirements.However, high temperature electrolysis using solid-oxide electrolyser cells (SOECs) is not yet a mature technology, with only one company (Sunfire) testing at any scale. A number of companies are now entering the race to develop SOEC stacks and systems, such as Fuel Cell Energy and Bloom in the USA, and Ceres Power in the UK. However, one of the major drawbacks of SOEC systems is that their lifetime is significantly lower than polymer electrolyte and alkaline electrode competitors. The degradation of nickel - a widely used electrode material on the hydrogen/steam side, is severe in the high steam contents found in electrolysers, and is a major source of degradation of the whole cell. While Ni is a vital component in a conventional SOEC fuel electrode, in which it acts as both catalyst and electron conductor, it would be beneficial to find a substitute with better thermal and redox stability to take over the roles of nickel.In this work we seek to build on our prior work on novel composite electrode structures, with a particular focus on utilising nickel exsolved ceria combined into both conventional composites and with our novel electrospun materials to create high performance and durable hydrogen-steam electrodes for solid oxide electrolysers, that will help accelerate their on-going development and deployment, leading to lower cost green hydrogen production.
氢正日益成为一种有吸引力的低碳能源载体,以支持工业热力、化学品、重型车辆、航运和火车等难以解决的行业的脱碳。沿着欧洲氢能战略的推出,2020年11月英国政府绿色计划中大规模纳入氢能,以及最近推出的英国氢能战略,这一点在全球范围内得到越来越多的认可。这些战略的重点是在可再生电力的驱动下,利用电解生产“绿色”氢气。如今,全球96%的氢气来自化石燃料,全球6%的天然气和2%的煤炭消费用于制氢,主要用于石化产品。目前,绿色氢是最昂贵的氢形式,大约60-80%的成本来自电力输入的成本。影响这一点的关键因素是电解槽本身的效率。电解槽分为两类:低温(70- 120 ℃)和高温(600- 850 ℃)。虽然基于碱性或聚合物技术的低温电解槽系统已经成熟并可商购,但其相对适中的效率(约65%)意味着固体氧化物电解槽(SOEC)在更高的温度(600- 900 ℃)下操作,其中水分解的热力学和动力学都更有利,受到越来越多的关注。事实上,由可再生电力驱动的高温蒸汽电解是生产氢气的最有效方式,蒸汽电解到氢气的电效率超过90%,并且有可能将废热整合到吸热过程中以进一步降低电能需求。然而,使用固体氧化物电解池(SOEC)的高温电解还不是一种成熟的技术,只有一家公司(Sunfire)在任何规模上进行测试。许多公司现在正在参与开发SOEC电池堆和系统的竞争,例如美国的燃料电池能源和Bloom,以及英国的Ceres Power。然而,SOEC系统的主要缺点之一是它们的寿命显著低于聚合物电解质和碱性电极竞争者。镍的降解-在氢气/蒸汽侧广泛使用的电极材料,在电解槽中发现的高蒸汽含量中是严重的,并且是整个电池降解的主要来源。虽然Ni是传统SOEC燃料电极中的重要组分,其中它既充当催化剂又充当电子导体,但找到具有更好的热稳定性和氧化还原稳定性的替代物来取代镍的作用将是有益的。特别关注利用结合到常规复合材料中的镍溶出的二氧化铈和我们的新型电纺材料来产生用于固体氧化物电解槽的高性能和耐用的氢-蒸汽电极,这将有助于加速其正在进行的开发和部署,从而降低绿色氢气生产的成本。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nigel Brandon其他文献
Global Potatoes
全球土豆
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Niall Mac Dowell;Nixon Sunny;Nigel Brandon;H. Herzog;A. Ku;W. Maas;Andrea Ramirez;David M Reiner;Gaurav N. Sant;Nilay Shah - 通讯作者:
Nilay Shah
Engineering novel Nisub2-X/subCosubx/subP structures for high performance lithium-ion storage
- DOI:
10.1016/j.ensm.2022.03.007 - 发表时间:
2022-06-01 - 期刊:
- 影响因子:20.200
- 作者:
Feng-Feng Li;Jian-Fei Gao;Zheng-Hua He;Nigel Brandon;Xiaohong Li;Ling-Bin Kong - 通讯作者:
Ling-Bin Kong
A hierarchical coupled optimization approach for dynamic simulation of building thermal environment and integrated planning of energy systems with supply and demand synergy
- DOI:
https://doi.org/10.1016/j.enconman.2022.115497 - 发表时间:
2022 - 期刊:
- 影响因子:
- 作者:
Yuan Huang;Jiguang Kang;Liu Liu;Xiaoyi Zhong;Jian Lin;Shan Xie;Chao Meng;Yizhang Zeng;Nilay Shah;Nigel Brandon;Yingru Zhao - 通讯作者:
Yingru Zhao
University of Birmingham H2FC SUPERGEN
伯明翰大学 H2FC SUPERGEN
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Nigel Brandon;John Irvine;I. Metcalfe;Vladimir Molkov;Nilay Shah;Paul Dodds;Sheila Samsatli;Claire Thompson - 通讯作者:
Claire Thompson
Comment on “How green is blue hydrogen?”
评论“蓝氢有多绿?”
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
M. Romano;C. Antonini;A. Bardow;V. Bertsch;Nigel Brandon;J. Brouwer;S. Campanari;L. Crema;P. Dodds;Stefania Gardarsdottir;M. Gazzani;Gert Jan Kramer;P. D. Lund;Niall Mac Dowell;E. Martelli;L. Mastropasqua;Russell C. McKenna;J. Monteiro;N. Paltrinieri;B. Pollet;Jeffrey Reed;T. J. Schmidt;J. Vente;D. Wiley - 通讯作者:
D. Wiley
Nigel Brandon的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nigel Brandon', 18)}}的其他基金
High efficiency reversible solid oxide cells for the integration of offshore renewable energy using hydrogen
用于利用氢整合海上可再生能源的高效可逆固体氧化物电池
- 批准号:
EP/W003597/1 - 财政年份:2022
- 资助金额:
$ 28.99万 - 项目类别:
Research Grant
Hydrogen and Fuel Cells Hub Extension (H2FC SUPERGEN)
氢和燃料电池中心扩展 (H2FC SUPERGEN)
- 批准号:
EP/P024807/1 - 财政年份:2017
- 资助金额:
$ 28.99万 - 项目类别:
Research Grant
ISCF Wave 1: Translational Energy Storage Diagnostics (TRENDs)
ISCF 第一波:转化型储能诊断(趋势)
- 批准号:
EP/R020973/1 - 财政年份:2017
- 资助金额:
$ 28.99万 - 项目类别:
Research Grant
Electrodes by Design - Microstructural Engineering of High Performance Electrodes for Solid Oxide Fuel Cells
电极设计 - 固体氧化物燃料电池高性能电极的微观结构工程
- 批准号:
EP/M014045/1 - 财政年份:2015
- 资助金额:
$ 28.99万 - 项目类别:
Research Grant
Novel diagnostic tools and techniques for monitoring and control of SOFC stacks - understanding mechanical and structural change
用于监测和控制 SOFC 电堆的新型诊断工具和技术 - 了解机械和结构变化
- 批准号:
EP/M02346X/1 - 财政年份:2015
- 资助金额:
$ 28.99万 - 项目类别:
Research Grant
Vanadium-Hydrogen flow battery for energy storage applications - a feasibility study
用于储能应用的钒氢液流电池——可行性研究
- 批准号:
EP/N508585/1 - 财政年份:2015
- 资助金额:
$ 28.99万 - 项目类别:
Research Grant
Lower Cost and Longer Life Flow Batteries for Grid Scale Energy Storage
用于电网规模储能的成本更低、寿命更长的液流电池
- 批准号:
EP/L014289/1 - 财政年份:2014
- 资助金额:
$ 28.99万 - 项目类别:
Research Grant
Hydrogen and Fuel Cell Supergen Hub
氢和燃料电池 Supergen Hub
- 批准号:
EP/J016454/1 - 财政年份:2012
- 资助金额:
$ 28.99万 - 项目类别:
Research Grant
相似国自然基金
气体信号分子硫化氢对颈动脉窦压力反射感受器的调节作用及机制
- 批准号:81100181
- 批准年份:2011
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
气体信号分子硫化氢对腰椎间盘髓核细胞凋亡影响的实验研究
- 批准号:81071504
- 批准年份:2010
- 资助金额:32.0 万元
- 项目类别:面上项目
硫化氢通过核转录因子-kB信号途径调节高血压大鼠血管平滑肌细胞增殖的研究
- 批准号:81070212
- 批准年份:2010
- 资助金额:33.0 万元
- 项目类别:面上项目
水合物储存氢气的应用基础研究
- 批准号:50806050
- 批准年份:2008
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
内源性硫化氢调控高血压血管基质重塑的研究
- 批准号:30801251
- 批准年份:2008
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Next Generation ALPHA Zebrafish Tank Washer: High Throughput with Reduced Environmental Impact
下一代 ALPHA 斑马鱼槽清洗机:高吞吐量,减少环境影响
- 批准号:
10737523 - 财政年份:2023
- 资助金额:
$ 28.99万 - 项目类别:
Corrosion of heat resisting alloys in steam/hydrogen-rich environment
耐热合金在蒸汽/富氢环境中的腐蚀
- 批准号:
DP220102392 - 财政年份:2022
- 资助金额:
$ 28.99万 - 项目类别:
Discovery Projects
Improvements to the Regional Biocontainment Research Facilities at the University of Missouri
密苏里大学区域生物防护研究设施的改进
- 批准号:
10394455 - 财政年份:2021
- 资助金额:
$ 28.99万 - 项目类别:
Steam generator for hydrogen-steam combustion experiments
用于氢气-蒸汽燃烧实验的蒸汽发生器
- 批准号:
562418-2021 - 财政年份:2021
- 资助金额:
$ 28.99万 - 项目类别:
University Undergraduate Student Research Awards
Development of high affinity novel Fluor Mop adsorbent for the rapid removal of perfluorinated chemicals from groundwater
开发高亲和力新型 Fluor Mop 吸附剂,用于快速去除地下水中的全氟化学品
- 批准号:
10259234 - 财政年份:2021
- 资助金额:
$ 28.99万 - 项目类别:
Comparing the effects on fuel carbon intensity when using hydrogen feedstock produced from electrolysis, steam methane reformation (SRM) and SMR with carbon capture, and evaluate the related greenhous
比较使用电解、蒸汽甲烷重整(SRM)和碳捕获SMR产生的氢原料时对燃料碳强度的影响,并评估相关的温室气体排放
- 批准号:
542466-2019 - 财政年份:2019
- 资助金额:
$ 28.99万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Effect of hydrogen from steam on external and internal oxidation processes of Fe- and Ni-base alloys
蒸汽中的氢气对铁基和镍基合金的外部和内部氧化过程的影响
- 批准号:
390545697 - 财政年份:2018
- 资助金额:
$ 28.99万 - 项目类别:
Research Grants
Hydrogen production from superheated steam by dielectric barrier discharge
介质阻挡放电过热蒸汽制氢
- 批准号:
18K19044 - 财政年份:2018
- 资助金额:
$ 28.99万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Validity and application of hydrogen / oxygen sensor application to steam oxidation research of heat-resistant material
氢/氧传感器在耐热材料蒸汽氧化研究中的有效性和应用
- 批准号:
15K06453 - 财政年份:2015
- 资助金额:
$ 28.99万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Hydrogen production by low-temperature ethanol steam reforming for exhaust heat recovery
低温乙醇蒸汽重整余热回收制氢
- 批准号:
15K18272 - 财政年份:2015
- 资助金额:
$ 28.99万 - 项目类别:
Grant-in-Aid for Young Scientists (B)