PREDICTION OF OUTCOME OF PERIPHERAL NERVE INJURIES - A PROBABILITY MODEL
周围神经损伤结果的预测 - 概率模型
基本信息
- 批准号:3944740
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:
- 资助国家:美国
- 起止时间:至
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The long term functional consequences of peripheral nerve
injuries are notoriously unpredictable. We hypothesized that
considering the individual regrowth of the elementary components
of a nerve (the neurites) rather than the global regeneration of
the organ could lead to a better understanding of the mechanisms
of nerve repair.
We postulated that the regrowth of any individual neurite can be
defined in terms of its influence on recovery, the three main
possibilities being valid, neutral and invalid regrowth. We have
designed a probability model describing the prospects of regrowth
for nerve composed of several types of fibers. This model is being
tested in pre-determined situations to judge its validity. We
found that possible variations in the outcome of nerve injuries
could be explained by a parsimonious hypothesis: the randomness
of regrowth.
周围神经损伤的长期功能后果
受伤是出了名的不可预测 我们假设
考虑到基本组件的单独再生
神经(神经突)的再生,而不是
该机关可以导致更好地了解机制,
神经修复
我们假设,任何单个神经突的再生都可以是
根据其对复苏的影响,
可能性是有效的,中性的和无效的再生。 我们有
设计了一个概率模型来描述
由几种纤维组成的神经。 这个模型被
在预先确定的情况下进行测试,以判断其有效性。 我们
发现神经损伤结果的可能变化
可以用一个简单的假设来解释:
的再生。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
L DEMEDINACELLI其他文献
L DEMEDINACELLI的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('L DEMEDINACELLI', 18)}}的其他基金
PREDICTION OF OUTCOME OF PERIPHERAL NERVE INJURIES - A PROBABILITY MODEL
周围神经损伤结果的预测 - 概率模型
- 批准号:
4696508 - 财政年份:
- 资助金额:
-- - 项目类别:
PREDICTION OF OUTCOME OF PERIPHERAL NERVE INJURIES - A PROBABILITY MODEL
周围神经损伤结果的预测 - 概率模型
- 批准号:
3968561 - 财政年份:
- 资助金额:
-- - 项目类别:
相似海外基金
Calculation and the Verification of the maximum electric power of Microbial Fuel Cells by Minimizing the Internal Resistance Using the Mathematical Model
微生物燃料电池内阻最小化最大电功率的数学模型计算与验证
- 批准号:
23K11483 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Advancement of mathematical model and visualization method for cognition of relation between micro and macro phenomena
认知微观与宏观现象关系的数学模型和可视化方法的进展
- 批准号:
23K11128 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Construction and analysis of a hybrid mathematical model describing the dynamics of bacterial cellular society
描述细菌细胞社会动态的混合数学模型的构建和分析
- 批准号:
23K03208 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Mathematical Model-Based Optimization of CRT Response in Ischemia
基于数学模型的缺血 CRT 反应优化
- 批准号:
10734486 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Noncontact Measurement of Multiple Sites of Multiple People Using Array Radar Signal Processing Based on Mathematical Model of Body Displacement
基于人体位移数学模型的阵列雷达信号处理非接触多人多部位测量
- 批准号:
23H01420 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
Mathematical model to simulate SARS-CoV-2 infection within-host
模拟宿主内 SARS-CoV-2 感染的数学模型
- 批准号:
EP/W007355/1 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Research Grant
A mathematical model of colloidal membrane vesicle formation
胶体膜囊泡形成的数学模型
- 批准号:
567961-2022 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Postgraduate Scholarships - Doctoral
Towards A Mathematical Model For Spacetimes With Multiple Histories
建立具有多重历史的时空数学模型
- 批准号:
577586-2022 - 财政年份:2022
- 资助金额:
-- - 项目类别:
University Undergraduate Student Research Awards
Mathematical model for quantitatively analysis the pathophysiological characteristics of mouse photoreceptor cell
定量分析小鼠感光细胞病理生理特征的数学模型
- 批准号:
22K20514 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Research Activity Start-up
Mathematical model of internal standard selection criteria for accurate quantitative analysis
精确定量分析内标选择标准的数学模型
- 批准号:
22K10604 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)