Vast-scale linear mixed modelling genetic discovery approaches for genome- and exome-wide association analyses to enable therapeutic target validation
用于全基因组和外显子组关联分析的大规模线性混合建模遗传发现方法,以实现治疗靶点验证
基本信息
- 批准号:MR/R025851/1
- 负责人:
- 金额:$ 38.18万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Fellowship
- 财政年份:2018
- 资助国家:英国
- 起止时间:2018 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Large-scale publicly available datasets, such as the UK Biobank (n=500,000 participants), which combine genome-wide genotyping and exome sequencing data with linkage to detailed phenotype measurement and electronic healthcare records have the opportunity to transform human genetic discovery analyses. Such datasets are transformative both in their scale and in the depth and diversity of quantitative and disease phenotypes available, and raised a strong interest both in the academia and the industry. In this regard, we have identified partners in Target Sciences (TSci) at GlaxoSmithKline (GSK), a leading team in the application of genetics in drug target discovery and validation. They have previously shown that drugs developed against targets with genetic support for the proposed disease are more likely to reach approval (PMID: 26121088), have used existing GWAS results to search for drug repurposing opportunities (PMID: 22491277) and to develop databases of gene-disease pairs to inform target discovery and validation decisions (PMID: 27899665, 28472345), and have used other biobank samples to influence selection of cardiovascular endpoints (PMID: 26791069) and search for drug repurposing opportunities (PMID: 27301456). GSK have previously performed large-scale targeted sequencing studies (PMID: 22604722) and recently funded exome sequencing of 50,000 participants in UK Biobank, with the aim of further supporting drug target discovery and validation. A major aim at GSK is to use UK Biobank data to conduct phenome-wide association studies (PheWAS), for variants known or predicted to affect gene function for drug targets of interest. The approach currently used is to test each single variant against thousands of disease traits, in the subset of unrelated individuals. However, this approach needs to be improved to distinguish between associations where the drug target variants are likely causal, from associations where the drug target variants are merely correlated (in linkage disequilibrium).Testing all variants (potentially thousands) in order to fine map in the genomic context of each association of interest is inefficient. A preferable approach is to conduct PheWAS and fine mapping in genomic context, by querying a database of genome-wide association results for all diseases and phenotypes of interest. To maximize discovery power and fine mapping resolution, it is preferable to populate this database with results calculated using in the largest possible sample size. However, an almost inevitable consequence of increasing sample sizes from human populations, is that a larger fraction of participants are related to other participants in the sample. Traditional approaches, such as removing one participant from each related pair, may lead to the removal of a significant proportion of participants from the analysis with consequent loss of statistical power. An alternative approach is using mixed linear model approaches to correct for population structure. However, these approaches require the development of new software tools to deal with large sample sizes, variants and numbers of phenotypes. However, GSK TSci scientists lack the technical expertise required to implement efficient mixed model association testing at the scale required, so this joint project is aimed to collaborate with them to develop the required methods to populate the database. Our work has the opportunity to be impactful on drug discovery and development.
大规模公开可用的数据集,如英国生物银行(n=500,000参与者),将全基因组基因分型和外显子组测序数据与详细的表型测量和电子医疗记录相结合,有机会改变人类基因发现分析。这些数据集在规模、数量和疾病表型的深度和多样性方面都具有变革性,引起了学术界和工业界的强烈兴趣。在这方面,我们在葛兰素史克公司(GSK)的目标科学公司(TSci)找到了合作伙伴,葛兰素史克公司是遗传学应用于药物靶点发现和验证的领先团队。他们之前的研究表明,针对有基因支持的靶点开发的药物更有可能获得批准(PMID: 26121088),利用现有的GWAS结果寻找药物再利用机会(PMID: 22491277),开发基因-疾病对数据库,为靶点发现和验证决策提供信息(PMID: 27899665, 28472345),并使用其他生物库样本影响心血管终点的选择(PMID: 26121088)。26791069),寻找药物再利用的机会(PMID: 27301456)。GSK此前进行了大规模靶向测序研究(PMID: 22604722),最近资助了英国生物银行5万名参与者的外显子组测序,目的是进一步支持药物靶点的发现和验证。GSK的一个主要目标是利用UK Biobank的数据进行全表型关联研究(PheWAS),研究已知或预测会影响感兴趣药物靶点基因功能的变异。目前使用的方法是在不相关个体的子集中测试每个单一变体对数千种疾病特征的影响。然而,这种方法需要改进,以区分药物靶点变异可能是因果关系的关联,以及药物靶点变异仅仅是相关的关联(连锁不平衡)。测试所有的变异(可能是数千个),以便在每个感兴趣的关联的基因组环境中绘制精细的图谱是低效的。一种较好的方法是通过查询所有感兴趣的疾病和表型的全基因组关联结果数据库,在基因组背景下进行PheWAS和精细定位。为了最大限度地提高发现能力和精细的映射分辨率,最好使用使用尽可能大的样本量计算的结果填充该数据库。然而,随着人口样本数量的增加,一个几乎不可避免的结果是,样本中更大比例的参与者与其他参与者有关系。传统的方法,例如从每个相关对中删除一个参与者,可能会导致从分析中删除相当大比例的参与者,从而导致统计能力的丧失。另一种方法是使用混合线性模型方法来校正人口结构。然而,这些方法需要开发新的软件工具来处理大样本量、变异和表型数量。然而,GSK TSci科学家缺乏所需的技术专长,无法在所需的规模上实施有效的混合模型关联测试,因此该联合项目旨在与他们合作,开发所需的方法来填充数据库。我们的工作有机会对药物发现和开发产生影响。
项目成果
期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
An atlas of genetic associations in UK Biobank.
- DOI:10.1038/s41588-018-0248-z
- 发表时间:2018-11
- 期刊:
- 影响因子:30.8
- 作者:Canela-Xandri O;Rawlik K;Tenesa A
- 通讯作者:Tenesa A
A multi-tissue atlas of regulatory variants in cattle.
- DOI:10.1038/s41588-022-01153-5
- 发表时间:2022-09
- 期刊:
- 影响因子:30.8
- 作者:Liu S;Gao Y;Canela-Xandri O;Wang S;Yu Y;Cai W;Li B;Xiang R;Chamberlain AJ;Pairo-Castineira E;D'Mellow K;Rawlik K;Xia C;Yao Y;Navarro P;Rocha D;Li X;Yan Z;Li C;Rosen BD;Van Tassell CP;Vanraden PM;Zhang S;Ma L;Cole JB;Liu GE;Tenesa A;Fang L
- 通讯作者:Fang L
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Oriol Canela-Xandri其他文献
The Farm Animal Genotype–Tissue Expression (FarmGTEx) Project
农场动物基因型-组织表达(FarmGTEx)项目
- DOI:
10.1038/s41588-025-02121-5 - 发表时间:
2025-03-17 - 期刊:
- 影响因子:29.000
- 作者:
Lingzhao Fang;Jinyan Teng;Qing Lin;Zhonghao Bai;Shuli Liu;Dailu Guan;Bingjie Li;Yahui Gao;Yali Hou;Mian Gong;Zhangyuan Pan;Ying Yu;Emily L. Clark;Jacqueline Smith;Konrad Rawlik;Ruidong Xiang;Amanda J. Chamberlain;Michael E. Goddard;Mathew Littlejohn;Greger Larson;David E. MacHugh;John F. O’Grady;Peter Sørensen;Goutam Sahana;Mogens Sandø Lund;Zhihua Jiang;Xiangchun Pan;Wentao Gong;Haihan Zhang;Xi He;Yuebo Zhang;Ning Gao;Jun He;Guoqiang Yi;Yuwen Liu;Zhonglin Tang;Pengju Zhao;Yang Zhou;Liangliang Fu;Xiao Wang;Dan Hao;Lei Liu;Siqian Chen;Robert S. Young;Xia Shen;Charley Xia;Hao Cheng;Li Ma;John B. Cole;Ransom L. Baldwin;Cong-jun Li;Curtis P. Van Tassell;Benjamin D. Rosen;Nayan Bhowmik;Joan Lunney;Wansheng Liu;Leluo Guan;Xin Zhao;Eveline M. Ibeagha-Awemu;Yonglun Luo;Lin Lin;Oriol Canela-Xandri;Martijn F. L. Derks;Richard P. M. A. Crooijmans;Marta Gòdia;Ole Madsen;Martien A. M. Groenen;James E. Koltes;Christopher K. Tuggle;Fiona M. McCarthy;Dominique Rocha;Elisabetta Giuffra;Marcel Amills;Alex Clop;Maria Ballester;Gwenola Tosser-Klopp;Jing Li;Chao Fang;Ming Fang;Qishan Wang;Zhuocheng Hou;Qin Wang;Fuping Zhao;Lin Jiang;Guiping Zhao;Zhengkui Zhou;Rong Zhou;Hehe Liu;Juan Deng;Long Jin;Mingzhou Li;Delin Mo;Xiaohong Liu;Yaosheng Chen;Xiaolong Yuan;Jiaqi Li;Shuhong Zhao;Yi Zhang;Xiangdong Ding;Dongxiao Sun;Hui-Zeng Sun;Cong Li;Yu Wang;Yu Jiang;Dongdong Wu;Wenwen Wang;Xinzhong Fan;Qin Zhang;Kui Li;Hao Zhang;Ning Yang;Xiaoxiang Hu;Wen Huang;Jiuzhou Song;Yang Wu;Jian Yang;Weiwei Wu;Claudia Kasper;Xinfeng Liu;Xiaofei Yu;Leilei Cui;Xiang Zhou;Seyoung Kim;Wei Li;Hae Kyung Im;Edward S. Buckler;Bing Ren;Michael C. Schatz;Jingyi Jessica Li;Abraham A. Palmer;Laurent Frantz;Huaijun Zhou;Zhe Zhang;George E. Liu - 通讯作者:
George E. Liu
Erratum to: Genetic determination of height-mediated mate choice
- DOI:
10.1186/s13059-016-0894-3 - 发表时间:
2016-02-11 - 期刊:
- 影响因子:9.400
- 作者:
Albert Tenesa;Konrad Rawlik;Pau Navarro;Oriol Canela-Xandri - 通讯作者:
Oriol Canela-Xandri
Reply to: Genotype by sex interactions in ankylosing spondylitis
回复:强直性脊柱炎中按性别交互作用的基因型
- DOI:
10.1038/s41588-022-01251-4 - 发表时间:
2023-01-09 - 期刊:
- 影响因子:29.000
- 作者:
Elena Bernabeu;Konrad Rawlik;Oriol Canela-Xandri;Andrea Talenti;James Prendergast;Albert Tenesa - 通讯作者:
Albert Tenesa
Oriol Canela-Xandri的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
基于热量传递的传统固态发酵过程缩小(Scale-down)机理及调控
- 批准号:22108101
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于Multi-Scale模型的轴流血泵瞬变流及空化机理研究
- 批准号:31600794
- 批准年份:2016
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
基于异构医学影像数据的深度挖掘技术及中枢神经系统重大疾病的精准预测
- 批准号:61672236
- 批准年份:2016
- 资助金额:64.0 万元
- 项目类别:面上项目
城镇居民亚健康状态的评价方法学及健康管理模式研究
- 批准号:81172775
- 批准年份:2011
- 资助金额:14.0 万元
- 项目类别:面上项目
嵌段共聚物多级自组装的多尺度模拟
- 批准号:20974040
- 批准年份:2009
- 资助金额:33.0 万元
- 项目类别:面上项目
宇宙暗成分物理研究
- 批准号:10675062
- 批准年份:2006
- 资助金额:26.0 万元
- 项目类别:面上项目
针对Scale-Free网络的紧凑路由研究
- 批准号:60673168
- 批准年份:2006
- 资助金额:25.0 万元
- 项目类别:面上项目
语义Web的无尺度网络模型及高性能语义搜索算法研究
- 批准号:60503018
- 批准年份:2005
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
超声防垢阻垢机理的动态力学分析
- 批准号:10574086
- 批准年份:2005
- 资助金额:35.0 万元
- 项目类别:面上项目
探讨复杂动力网络的同步能力和鲁棒性
- 批准号:60304017
- 批准年份:2003
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
相似海外基金
A Mixed Methods Assessment of Clinic Characteristics Associated with Successful Scale-up & Sustainment of Systems Navigation & Psychosocial Counseling for People Who Inject Drugs with HIV in Vietnam
与成功扩大规模相关的临床特征的混合方法评估
- 批准号:
10700589 - 财政年份:2023
- 资助金额:
$ 38.18万 - 项目类别:
Linear predictive coding of EEG Activity for Diagnosis of Parkinson's Disease (LEAD-PD)
用于诊断帕金森病的脑电图活动的线性预测编码 (LEAD-PD)
- 批准号:
10659447 - 财政年份:2023
- 资助金额:
$ 38.18万 - 项目类别:
Progression of Entorhinal-hippocampal Spatial and Emotional Processing Deficits in a Mouse Model of Temporal Lobe Epilepsy
颞叶癫痫小鼠模型内嗅海马空间和情绪处理缺陷的进展
- 批准号:
10829101 - 财政年份:2023
- 资助金额:
$ 38.18万 - 项目类别:
AF: Small: RUI: Toward High-Performance Block Krylov Subspace Algorithms for Solving Large-Scale Linear Systems
AF:小:RUI:用于求解大规模线性系统的高性能块 Krylov 子空间算法
- 批准号:
2327619 - 财政年份:2023
- 资助金额:
$ 38.18万 - 项目类别:
Standard Grant
Development of FAST-DOSE assay system for the rapid assessment of acute radiation exposure, individual radiosensitivity and injury in victims for a large-scale radiological incident
开发快速剂量测定系统,用于快速评估大规模放射事件受害者的急性辐射暴露、个体放射敏感性和损伤
- 批准号:
10784562 - 财政年份:2023
- 资助金额:
$ 38.18万 - 项目类别:
Project INSPIRE – (Interprofessional Simulation Program for Clinical Resilience and Empathy) for healthcare teams caring for birthing individuals with substance use disorder in Utah
INSPIRE 项目 –(临床复原力和同理心跨专业模拟项目)针对犹他州照顾患有物质使用障碍的新生儿的医疗团队
- 批准号:
10748245 - 财政年份:2023
- 资助金额:
$ 38.18万 - 项目类别:
Collaborative Research: Randomized Numerical Linear Algebra for Large Scale Inversion, Sparse Principal Component Analysis, and Applications
合作研究:大规模反演的随机数值线性代数、稀疏主成分分析及应用
- 批准号:
2152661 - 财政年份:2022
- 资助金额:
$ 38.18万 - 项目类别:
Standard Grant
Digital Markers of Mobility in Daily Life to Track Progression in Newly Diagnosed Parkinson's Disease
日常生活中的移动数字标记可追踪新诊断的帕金森病的进展
- 批准号:
10708151 - 财政年份:2022
- 资助金额:
$ 38.18万 - 项目类别:
Race/Ethnicity-Specific Algorithms of Chronic Stress Exposures for Preterm Birth Risk: Machine Learning Approach
针对早产风险的慢性压力暴露的种族/民族特定算法:机器学习方法
- 批准号:
10448093 - 财政年份:2022
- 资助金额:
$ 38.18万 - 项目类别:














{{item.name}}会员




