Remote control: How do microbiota promote animal health? Defining signalling circuits and mechanisms.

远程控制:微生物群如何促进动物健康?

基本信息

  • 批准号:
    MR/Y019660/1
  • 负责人:
  • 金额:
    $ 75.6万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Fellowship
  • 财政年份:
    2024
  • 资助国家:
    英国
  • 起止时间:
    2024 至 无数据
  • 项目状态:
    未结题

项目摘要

In the UK and globally, we are beset by two long-term pandemics: ageing, and metabolic disease. Both are astronomically harmful and costly. As average ages increase, disease prevalence rises, with projected healthcare costs in $trillions. At the same time, one in three adults are now overweight or obese, and recent headlines have highlighted studies predicting 1.3bn diabetic adults by 2050. The devastating health impacts and staggering financial costs provide a very strong motivation to understand the causes of metabolic disease, and how we can promote healthy ageing. Gut microbiota are linked to both metabolic disease and ageing. We see the same effects of microbiota across animals, suggesting causes in fundamental biology. Thus, understanding the biology of host-microbiota interactions in animal models may help us to both fight metabolic disease and promote healthy ageing in humans.Ageing and metabolism are whole-organism processes. The fact that microbiota alter these processes, despite being physically confined to the gut lumen, suggests that microbes exert "remote control" - altering systemic function through long-distance molecular cross-talk. The molecules in play are likely to be hormones and metabolites released from the gut into circulation. We are studying these molecules in fruitflies, which share many aspects of biology with other animals, including humans. Advantages of working in flies are that we have extraordinary control of the microbiota, diet, and the fly's function, allowing us to study mechanisms that occur across animals precisely and rapidly; generating predictions that we expect to generalise across species. We have made two breakthroughs in the first phase of this project. First, we have generated an atlas of metabolic changes that specific microbiota induce in specific tissues, which has indicated regulation of compounds that play fundamental roles throughout animals. Second, we have identified a specific hormone - tachykinin - modulated by specific bacteria, specifically in the gut, which we think signals to a specific receptor in the fly brain. Knocking down this circuit makes flies constitutively long-lived and even dramatically reverses the impact of microbiota on fat storage, indicating a central role as a mediator of microbial effects on ageing and metabolism. This hormone is conserved in humans, and drugs targeting its receptor are already licenced, suggesting we may be able to translate our findings.In the renewal of this project, I will combine both established and new methods to test conclusively whether a tachykinin relay from gut to brain mediates impacts of microbiota on ageing and metabolism. I will use cutting edge technologies to identify specific populations of cells in the fly brain where the tachykinin receptor responds to presence of gut bacteria, depending on gut expression of tachykinin hormone. Finally I will build on my experience of studying ageing and metabolism to investigate how microbiota alters mortality through tachykinin, and how tachykinin appears to induce a metabolic switch in how fat metabolism responds to gut bacteria. This information will lay the foundation for a long-term, large-scale, multi-model research program, characterising biology so fundamental that we anticipate we can target it to promote human health.
在英国和全球范围内,我们受到两种长期流行病的困扰:衰老和代谢性疾病。两者都是天文数字般的有害和昂贵。随着平均年龄的增长,疾病患病率上升,预计医疗费用将达到数万亿美元。与此同时,三分之一的成年人现在超重或肥胖,最近的头条新闻强调了预测到2050年将有13亿糖尿病成年人的研究。破坏性的健康影响和惊人的财务成本提供了一个非常强大的动力来了解代谢疾病的原因,以及我们如何促进健康的老龄化。肠道微生物群与代谢疾病和衰老有关。我们在动物身上看到了相同的微生物群效应,这表明了基础生物学的原因。因此,了解动物模型中宿主-微生物群相互作用的生物学可能有助于我们对抗代谢疾病并促进人类健康衰老。衰老和代谢是整个生物体的过程。微生物群改变这些过程的事实,尽管被物理限制在肠腔中,表明微生物发挥“远程控制”-通过长距离分子串扰改变系统功能。起作用的分子可能是从肠道释放到循环中的激素和代谢物。我们正在研究果蝇中的这些分子,果蝇与包括人类在内的其他动物在生物学方面有许多共同之处。在苍蝇身上工作的优势在于,我们对微生物群、饮食和苍蝇的功能有着非凡的控制力,使我们能够精确而快速地研究动物之间发生的机制;产生我们期望在物种之间推广的预测。我们在这个项目的第一阶段取得了两个突破。首先,我们已经生成了特定微生物群在特定组织中诱导的代谢变化的图谱,这表明了在整个动物中发挥基本作用的化合物的调节。其次,我们已经确定了一种特定的激素-速激肽-由特定的细菌调节,特别是在肠道中,我们认为它向苍蝇大脑中的特定受体发出信号。敲除这一电路使苍蝇组成长寿,甚至显着逆转微生物群对脂肪储存的影响,表明作为微生物对衰老和代谢影响的介导者的核心作用。这种激素在人体中是保守的,并且针对其受体的药物已经获得许可,这表明我们也许能够转化我们的发现。在该项目的更新中,我将联合收割机结合现有方法和新方法来最终测试速激肽是否从肠道传递到大脑介导微生物群对衰老和新陈代谢的影响。我将使用尖端技术来识别果蝇大脑中的特定细胞群,速激肽受体对肠道细菌的存在做出反应,这取决于速激肽激素的肠道表达。最后,我将根据我研究衰老和代谢的经验,研究微生物群如何通过速激肽改变死亡率,以及速激肽如何诱导脂肪代谢如何响应肠道细菌的代谢开关。这些信息将为长期、大规模、多模型的研究计划奠定基础,这些研究计划将生物学描述得如此重要,以至于我们预计我们可以将其用于促进人类健康。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Adam Dobson其他文献

Cannulation Training: Immediately Available, Low-Cost Simulation in the Clinical Environment
  • DOI:
    10.1007/s40670-025-02378-9
  • 发表时间:
    2025-04-04
  • 期刊:
  • 影响因子:
    1.800
  • 作者:
    Stephanie Harper;Simon Hatton;Adam Dobson
  • 通讯作者:
    Adam Dobson
Perioperative oral paracetamol: kicking the intravenous habit to promote sustainable healthcare
  • DOI:
    10.1016/j.bjao.2022.100074
  • 发表时间:
    2022-10-01
  • 期刊:
  • 影响因子:
  • 作者:
    Parineeta Ghosh;Annie Pinder;Sally Griffiths;Paul Lancaster;Adam Dobson
  • 通讯作者:
    Adam Dobson

Adam Dobson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Adam Dobson', 18)}}的其他基金

Remote control: How do microbiota promote animal health?
远程控制:微生物群如何促进动物健康?
  • 批准号:
    MR/S033939/1
  • 财政年份:
    2019
  • 资助金额:
    $ 75.6万
  • 项目类别:
    Fellowship

相似国自然基金

Pt/碲化物亲氧性调控助力醇类燃料电氧化的研究
  • 批准号:
    22302168
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
钱江潮汐影响下越江盾构开挖面动态泥膜形成机理及压力控制技术研究
  • 批准号:
    LY21E080004
  • 批准年份:
    2020
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cortical control of internal state in the insular cortex-claustrum region
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    25 万元
  • 项目类别:
Lagrange网络实用同步的不连续控制研究
  • 批准号:
    61603174
  • 批准年份:
    2016
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
职业因素致慢性肌肉骨骼损伤模型及防控研究
  • 批准号:
    81172643
  • 批准年份:
    2011
  • 资助金额:
    50.0 万元
  • 项目类别:
    面上项目
呼吸中枢低氧通气反应的遗传机制及其对睡眠呼吸障碍的影响
  • 批准号:
    81070069
  • 批准年份:
    2010
  • 资助金额:
    34.0 万元
  • 项目类别:
    面上项目
动态无线传感器网络弹性化容错组网技术与传输机制研究
  • 批准号:
    61001096
  • 批准年份:
    2010
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
超临界机翼激波三维鼓包控制机理及参数优化研究
  • 批准号:
    10972233
  • 批准年份:
    2009
  • 资助金额:
    36.0 万元
  • 项目类别:
    面上项目
中枢钠氢交换蛋白3在睡眠呼吸暂停呼吸控制稳定性中的作用和调控机制
  • 批准号:
    30900646
  • 批准年份:
    2009
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
低辐射空间环境下商用多核处理器层次化软件容错技术研究
  • 批准号:
    90818016
  • 批准年份:
    2008
  • 资助金额:
    50.0 万元
  • 项目类别:
    重大研究计划

相似海外基金

Collaborative Research: How do plants control sperm nuclear migration for successful fertilization?
合作研究:植物如何控制精子核迁移以成功受精?
  • 批准号:
    2334517
  • 财政年份:
    2024
  • 资助金额:
    $ 75.6万
  • 项目类别:
    Standard Grant
Collaborative Research: NSF-BSF: How cell adhesion molecules control neuronal circuit wiring: Binding affinities, binding availability and sub-cellular localization
合作研究:NSF-BSF:细胞粘附分子如何控制神经元电路布线:结合亲和力、结合可用性和亚细胞定位
  • 批准号:
    2321481
  • 财政年份:
    2024
  • 资助金额:
    $ 75.6万
  • 项目类别:
    Continuing Grant
Collaborative Research: NSF-BSF: How cell adhesion molecules control neuronal circuit wiring: Binding affinities, binding availability and sub-cellular localization
合作研究:NSF-BSF:细胞粘附分子如何控制神经元电路布线:结合亲和力、结合可用性和亚细胞定位
  • 批准号:
    2321480
  • 财政年份:
    2024
  • 资助金额:
    $ 75.6万
  • 项目类别:
    Continuing Grant
Atomic Anxiety in the New Nuclear Age: How Can Arms Control and Disarmament Reduce the Risk of Nuclear War?
新核时代的原子焦虑:军控与裁军如何降低核战争风险?
  • 批准号:
    MR/X034690/1
  • 财政年份:
    2024
  • 资助金额:
    $ 75.6万
  • 项目类别:
    Fellowship
How age & sex impact the transcriptional control of mammalian muscle growth
你多大
  • 批准号:
    DP240100408
  • 财政年份:
    2024
  • 资助金额:
    $ 75.6万
  • 项目类别:
    Discovery Projects
Deciphering plant stress memory: the exploration of how DNA methylation and the rhizosphere microbiome control stress memory in plants
解读植物逆境记忆:探索DNA甲基化和根际微生物如何控制植物逆境记忆
  • 批准号:
    BB/Z514810/1
  • 财政年份:
    2024
  • 资助金额:
    $ 75.6万
  • 项目类别:
    Fellowship
Is to achieve a breakthrough in the problem of how to reliably control the many qubits in an errorfree and scalable way.
就是要在如何以无错误且可扩展的方式可靠地控制众多量子比特的问题上取得突破。
  • 批准号:
    2906479
  • 财政年份:
    2024
  • 资助金额:
    $ 75.6万
  • 项目类别:
    Studentship
Collaborative Research: How do plants control sperm nuclear migration for successful fertilization?
合作研究:植物如何控制精子核迁移以成功受精?
  • 批准号:
    2334516
  • 财政年份:
    2024
  • 资助金额:
    $ 75.6万
  • 项目类别:
    Standard Grant
How do Fbxo7 and PI31 control sperm morphogenesis and male fertility?
Fbxo7 和 PI31 如何控制精子形态发生和男性生育能力?
  • 批准号:
    BB/X014177/1
  • 财政年份:
    2024
  • 资助金额:
    $ 75.6万
  • 项目类别:
    Research Grant
CPS: Small: Learning How to Control: A Meta-Learning Approach for the Adaptive Control of Cyber-Physical Systems
CPS:小:学习如何控制:网络物理系统自适应控制的元学习方法
  • 批准号:
    2228092
  • 财政年份:
    2023
  • 资助金额:
    $ 75.6万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了