A 3D in vitro glioblastoma cell culture system for identification and evaluation of novel radiosensitisers reducing rodent xenograft studies
3D 体外胶质母细胞瘤细胞培养系统,用于识别和评估新型放射增敏剂,减少啮齿动物异种移植研究
基本信息
- 批准号:NC/P001335/1
- 负责人:
- 金额:$ 47.7万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2017
- 资助国家:英国
- 起止时间:2017 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Glioblastoma is the most common primary brain tumour and is currently incurable. Despite aggressive treatment involving surgery, radiotherapy and chemotherapy, average life expectancy for glioblastoma patients is about one year. Over the past ten years many large, international clinical trials have tested new treatments but none of them has been successful. This is particularly disappointing because many of the new 'targeted' drugs being tested in these trials seemed to be effective when tested in the laboratory. When glioblastoma cells are cultured in the laboratory they are usually grown as single layers of cells in plastic flasks. These 2-dimensional (2D) cell culture conditions cause marked changes in the shape and behaviour of the tumour cells which affect the way they respond to cancer treatments including radiotherapy and targeted drugs. Because many new drugs appear to be effective in 2D cell cultures, they are then tested in mice and rats implanted with glioblastoma cells. Some drugs show promising results in these animal experiments but are still not effective when tested in patients. So, we need a different method for developing and testing new treatments. First we need to understand why glioblastomas are resistant to radiotherapy, chemotherapy and the new targeted drugs. Then we need to develop new treatments that overcome these mechanisms of resistance. To avoid treating large numbers of animals with ineffective drugs, we also need to be more confident that drugs will work in patients before we start performing animal experiments. To address these issues we have developed a new, 3D model of glioblastoma that can be grown in the laboratory using tumour cells from patients with glioblastoma. These cells are grown on polystyrene scaffolds coated with special proteins found in glioblastomas, and are nourished with specialised growth factors that are also present in glioblastomas. We have shown that this 3D model contains many of the features that we see in tumours in patients. More importantly, we have shown that drugs which work in patients also work in the 3D model, while drugs which don't work in patients have no effect in the 3D model. Some of these drugs had opposite effects on cells grown in 2D and 3D conditions.Because we have confidence in the 3D model, we believe it will be valuable to look for genes and proteins that are switched on when 3D cells are treated with radiotherapy, and then test new drugs that can block the effects of these genes and proteins. We have already found several genes that are switched on by radiotherapy in 3D but not 2D cells, and our early experiments suggest that we can overcome resistance to radiotherapy by targeting these genes. in this way we will identify new drugs that are much more likely to be effective in patients.However we realise that our current 3D model is rather simple and that lots of other cells and structures in glioblastoma might be important. Tumour blood vessels are particularly influential because the cells that line them (endothelial cells) produce chemicals that nourish the tumour cells and make them resistant to radiotherapy. We will therefore develop a more complex 3D model composed of glioblastoma cells and human brain microvascular endothelial cells and see if the new drugs are also effective in this new 'multicellular' model. At the same time we will investigate how the the different cell types interact and how this causes resistance to treatment. Finally, we will convert the new 3D model into a format that allows 'high throughput screening' of new drugs. This will allow us and other researchers around the world to test very large numbers of new drugs as efficiently as possible. Overall we aim to improve treatments for glioblastoma patients while reducing the number of animal experiments. We will achieve these aims by developing a new 3D model of glioblastoma that accurately predicts which new drugs will be effective in patients.
胶质母细胞瘤是最常见的原发性脑肿瘤,目前无法治愈。尽管积极的治疗包括手术,放疗和化疗,胶质母细胞瘤患者的平均预期寿命约为一年。在过去的十年里,许多大型的国际临床试验已经测试了新的治疗方法,但没有一个是成功的。这尤其令人失望,因为在这些试验中测试的许多新的“靶向”药物在实验室测试时似乎是有效的。当胶质母细胞瘤细胞在实验室培养时,它们通常在塑料烧瓶中以单层细胞形式生长。这些二维(2D)细胞培养条件导致肿瘤细胞的形状和行为发生显著变化,影响它们对癌症治疗(包括放射治疗和靶向药物)的反应方式。由于许多新药似乎在2D细胞培养中有效,因此它们随后在植入胶质母细胞瘤细胞的小鼠和大鼠中进行测试。一些药物在这些动物实验中显示出有希望的结果,但在患者身上测试时仍然无效。因此,我们需要一种不同的方法来开发和测试新的治疗方法。首先,我们需要了解为什么胶质母细胞瘤对放疗、化疗和新的靶向药物具有抗药性。然后我们需要开发新的治疗方法来克服这些耐药机制。为了避免用无效的药物治疗大量动物,我们还需要在开始进行动物实验之前更有信心地相信药物对患者有效。为了解决这些问题,我们开发了一种新的胶质母细胞瘤3D模型,可以在实验室中使用胶质母细胞瘤患者的肿瘤细胞进行生长。这些细胞生长在涂有胶质母细胞瘤中发现的特殊蛋白质的聚苯乙烯支架上,并用胶质母细胞瘤中也存在的特殊生长因子滋养。我们已经证明,这个3D模型包含了我们在患者肿瘤中看到的许多特征。更重要的是,我们已经证明,对患者有效的药物在3D模型中也有效,而对患者无效的药物在3D模型中没有效果。其中一些药物对二维和三维条件下生长的细胞有相反的作用。因为我们对三维模型有信心,我们相信寻找在三维细胞接受放射治疗时被打开的基因和蛋白质,然后测试可以阻断这些基因和蛋白质作用的新药是有价值的。我们已经在3D细胞中发现了几个被放射治疗打开的基因,而不是2D细胞,我们早期的实验表明,我们可以通过靶向这些基因来克服对放射治疗的抵抗。通过这种方式,我们将确定更有可能对患者有效的新药。然而,我们意识到,我们目前的3D模型相当简单,胶质母细胞瘤中的许多其他细胞和结构可能很重要。肿瘤血管特别有影响力,因为它们的细胞(内皮细胞)产生的化学物质滋养肿瘤细胞,使它们对放射治疗有抵抗力。因此,我们将开发一个由胶质母细胞瘤细胞和人脑微血管内皮细胞组成的更复杂的3D模型,看看新药在这种新的“多细胞”模型中是否也有效。与此同时,我们将研究不同类型的细胞如何相互作用,以及这如何导致对治疗的抵抗。最后,我们将把新的3D模型转换成一种允许新药“高通量筛选”的格式。这将使我们和世界各地的其他研究人员能够尽可能有效地测试大量新药。总的来说,我们的目标是改善胶质母细胞瘤患者的治疗,同时减少动物实验的数量。我们将通过开发一种新的胶质母细胞瘤3D模型来实现这些目标,该模型可以准确预测哪些新药对患者有效。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Anthony Chalmers其他文献
1644: Association between travel time and use of radiotherapy: an observational study of ,450 patients.
1644年:旅行时间与放射疗法使用之间的关联:450名患者的观察性研究。
- DOI:
10.1016/s0167-8140(24)02004-8 - 发表时间:
2024-05-01 - 期刊:
- 影响因子:5.300
- 作者:
Philip McLoone;Billy Sloan;Cameron Watt;Martin Glegg;Richard Jones;Anthony Chalmers;David S. Morrison - 通讯作者:
David S. Morrison
3513 ATM inhibition with AZD1390 and conventional radiotherapy in non-small cell lung cancer: interim report from the CONCORDE phase Ib trial (NCT04550104)
在非小细胞肺癌中使用AZD1390抑制3513 ATM并结合常规放疗:CONCORDE Ib期试验(NCT04550104)的中期报告
- DOI:
10.1016/s0167-8140(25)01767-0 - 发表时间:
2025-05-01 - 期刊:
- 影响因子:5.300
- 作者:
Gerard Walls;Ashley Horne;Stephen Harrow;Matthew Hatton;Paul Shaw;Konstantinos Rizos;Dominic Rothwell;Oluwaseun Ojo;Chara Stavraka;Colin Glover;Adam Hassani;Fiona Walker;Jessica Kendall;Matthew Norris;Rachel Phillip;Jamie Oughton;Anthony Chalmers;Sarah Brown;Corinne Faivre-Finn;Alastair Greystoke - 通讯作者:
Alastair Greystoke
1480: Dose-response of oesophageal toxicity after thoracic re-irradiation with or without chemotherapy
1480年:胸腔重新辐照后,有或没有化学疗法的食道毒性的剂量反应
- DOI:
10.1016/s0167-8140(24)01867-x - 发表时间:
2024-05-01 - 期刊:
- 影响因子:5.300
- 作者:
Robert Rulach;Stephen Harrow;Anthony Chalmers;John Fenwick - 通讯作者:
John Fenwick
Pelvic radiation disease: defining incidence and outcomes from a specialist clinic
- DOI:
10.1016/j.rcro.2023.100019 - 发表时间:
2023-12-01 - 期刊:
- 影响因子:
- 作者:
Kirsty Cavanagh;Sally Darnborough;Adam Peters;Carol Smeaton;Stephanie Millar;Anthony Chalmers - 通讯作者:
Anthony Chalmers
1482: Re-irradiation in non-small cell lung cancer: overall survival longer with higher retreatment dose
1482:非小细胞肺癌的重新辐照:总体存活时间更长,恢复剂量较高
- DOI:
10.1016/s0167-8140(24)01869-3 - 发表时间:
2024-05-01 - 期刊:
- 影响因子:5.300
- 作者:
Robert Rulach;Stephen Harrow;Anthony Chalmers;John Fenwick - 通讯作者:
John Fenwick
Anthony Chalmers的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Anthony Chalmers', 18)}}的其他基金
Investigating the role of the actin-myosin regulatory protein MRCK in promoting radiation induced infiltration by glioblastoma cells.
研究肌动蛋白-肌球蛋白调节蛋白 MRCK 在促进放射诱导的胶质母细胞瘤细胞浸润中的作用。
- 批准号:
MR/R009473/1 - 财政年份:2017
- 资助金额:
$ 47.7万 - 项目类别:
Research Grant
Overcoming treatment resistance in glioblastoma multiforme by tumour specific inhibition of DNA repair.
通过肿瘤特异性抑制 DNA 修复来克服多形性胶质母细胞瘤的治疗耐药性。
- 批准号:
G0802755/2 - 财政年份:2010
- 资助金额:
$ 47.7万 - 项目类别:
Fellowship
Overcoming treatment resistance in glioblastoma multiforme by tumour specific inhibition of DNA repair.
通过肿瘤特异性抑制 DNA 修复来克服多形性胶质母细胞瘤的治疗耐药性。
- 批准号:
G0802755/1 - 财政年份:2009
- 资助金额:
$ 47.7万 - 项目类别:
Fellowship
相似国自然基金
基于滋养层类器官探究早期胎盘发育
- 批准号:31900572
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
基于BYL in vitro体系的抗病毒生物药剂分子作用机理研究
- 批准号:31401710
- 批准年份:2014
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
基于In vitro细胞模型的饲料虾青素的吸收、转运、沉积机制及作用机理研究
- 批准号:31101911
- 批准年份:2011
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
In silico/In vitro偶联ACAT生理模型筛选药物及其制剂的生物利用度/生物等效性
- 批准号:81173009
- 批准年份:2011
- 资助金额:50.0 万元
- 项目类别:面上项目
丙型肝炎病毒感染宿主细胞的分子生物学研究
- 批准号:30870127
- 批准年份:2008
- 资助金额:40.0 万元
- 项目类别:面上项目
相似海外基金
Novel Roles of TAZ and YAP in DNA Damage Repair with 3D Genome Organization and the Therapeutic Resistance in Glioblastoma
TAZ 和 YAP 在 3D 基因组组织 DNA 损伤修复中的新作用以及胶质母细胞瘤的治疗耐药性
- 批准号:
10649830 - 财政年份:2023
- 资助金额:
$ 47.7万 - 项目类别:
Investigating Pathophysiology of Glioma Stem Cells in 3D Bioprinted Vascularized Glioblastoma Model
研究 3D 生物打印血管化胶质母细胞瘤模型中胶质瘤干细胞的病理生理学
- 批准号:
10373269 - 财政年份:2022
- 资助金额:
$ 47.7万 - 项目类别:
STAG2 mutations and 3D genome organization in glioblastoma multiforme
多形性胶质母细胞瘤中的 STAG2 突变和 3D 基因组组织
- 批准号:
10681289 - 财政年份:2022
- 资助金额:
$ 47.7万 - 项目类别:
Investigating Pathophysiology of Glioma Stem Cells in 3D Bioprinted Vascularized Glioblastoma Model
研究 3D 生物打印血管化胶质母细胞瘤模型中胶质瘤干细胞的病理生理学
- 批准号:
10545037 - 财政年份:2022
- 资助金额:
$ 47.7万 - 项目类别:
STAG2 mutations and 3D genome organization in glioblastoma multiforme
多形性胶质母细胞瘤中的 STAG2 突变和 3D 基因组组织
- 批准号:
10525627 - 财政年份:2022
- 资助金额:
$ 47.7万 - 项目类别:
Harnessing Continuous Liquid Interface 3D Printing to Improve Tumor-homing Stem Cell Therapy for Post-surgical Brain Cancer
利用连续液体界面 3D 打印改善脑癌术后肿瘤归巢干细胞疗法
- 批准号:
10552623 - 财政年份:2022
- 资助金额:
$ 47.7万 - 项目类别:
Harnessing Continuous Liquid Interface 3D Printing to Improve Tumor-homing Stem Cell Therapy for Post-surgical Brain Cancer
利用连续液体界面 3D 打印改善脑癌术后肿瘤归巢干细胞疗法
- 批准号:
10420701 - 财政年份:2022
- 资助金额:
$ 47.7万 - 项目类别:
Dynamic 3D chromatin remodeling in acute leukemia - Resubmission - 1
急性白血病的动态 3D 染色质重塑 - 重新提交 - 1
- 批准号:
10210969 - 财政年份:2021
- 资助金额:
$ 47.7万 - 项目类别:
Engineering Brain Cancer in a Dish: Hydrogel-based 3D in vitro Models for Pediatric Brain Tumor
在培养皿中改造脑癌:基于水凝胶的小儿脑肿瘤 3D 体外模型
- 批准号:
10284928 - 财政年份:2021
- 资助金额:
$ 47.7万 - 项目类别:
Dynamic 3D chromatin remodeling in acute leukemia - Resubmission - 1
急性白血病的动态 3D 染色质重塑 - 重新提交 - 1
- 批准号:
10364736 - 财政年份:2021
- 资助金额:
$ 47.7万 - 项目类别: