NON-ITERATIVE METHODS FOR 3D SPECT IMAGE RECONSTRUCTION
3D 光谱图像重建的非迭代方法
基本信息
- 批准号:6173006
- 负责人:
- 金额:$ 10.29万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:1996
- 资助国家:美国
- 起止时间:1996-04-01 至 2001-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The broad objective of the proposed research is to develop a novel theory
and practical methods for accurate reconstruction of three-dimensional (3D)
tomographic images in single-photon emission computed tomography (SPECT).
We believe that the new concepts, perspectives, and techniques developed in
the proposed research will have a significant impact on ongoing research
addressing advanced tomographic reconstruction techniques throughout the
medical imaging community.
The proposed research will investigate and develop methods that compensate
for the effects of physical factors t hat arise in 3D SPECT. In
particular, we will focus on the development of novel methods that
compensate for uniform attenuation and distance-dependent spatial
resolution, that provide closed-form (i.e., non-iterative) mathematical
solutions, and that control noise in an optimal sense in 3D SPECT. We will
extend the closed-form methods that we develop to 3D Spect with variable
attenuation. Results of ongoing research by other investigators on
compensation for scatter in 3D SPECT will be incorporated into the proposed
research as they become available.
Our preliminary theoretical and numerical studies ina the area of the
proposed research are highly promising and have sparked considerable
interest in the field of medical imaging science, revealing a variety of
fundamental concepts and perspectives that were unknown previously in both
2D and 3D SPECT and that enrich our understanding of the 3D SPECT image
reconstruction task.
The specific aims of this proposal are;
(1) Development f closed-form methods for accurate estimation of the ideal
sinogram,
(2) Development of 3D generalized Tretiak-Metz approaches,
(3) Extension of the proposed methods to 3D SPECT with variable
attenuation,
(4) Implementation of the proposed methods,
(5) Implementation of the proposed methods,
(5) Quantitative evaluation of the proposed methods.
拟议研究的广泛目标是发展一种新的理论。
和实用的三维(3D)精确重建方法
单光子发射计算机断层扫描(SPECT)中的断层图像。
我们相信,在
拟议的研究将对正在进行的研究产生重大影响
介绍了先进的层析重建技术
医学影像社区。
拟议中的研究将调查和开发补偿方法
由于物理因素的影响,在3DSPECT中会出现这种情况。在……里面
特别是,我们将专注于开发新的方法,
补偿均匀衰减和距离相关的空间
解决方案,提供闭合形式(即,非迭代)的数学
解决方案,并在3D SPECT中以最佳方式控制噪声。我们会
将我们开发的封闭形式方法扩展到带变量的3D SPECT
衰减。其他调查人员正在进行的关于
3D SPECT中的散射补偿将纳入拟议的
在它们可用时进行研究。
我们在这一领域的初步理论和数值研究
拟议中的研究非常有希望,并引发了相当大的
对医学成像科学领域的兴趣,揭示了各种
以前在这两个领域中未知的基本概念和观点
2D和3D SPECT,丰富了我们对3D SPECT图像的理解
重建任务。
这项建议的具体目标是;
(1)精确估计理想的闭式方法的发展
正弦图形,
(2)三维广义Tretiak-Metz方法的发展,
(3)将所提出的方法推广到带变量的三维SPECT
衰减,
(4)实施建议的方法;
(5)实施建议的方法;
(5)对所提出的方法进行定量评价。
项目成果
期刊论文数量(17)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Optimal noise control in and fast reconstruction of fan-beam computed tomography image.
- DOI:10.1118/1.598574
- 发表时间:1999-05
- 期刊:
- 影响因子:3.8
- 作者:Xiaochuan Pan
- 通讯作者:Xiaochuan Pan
Partial volume and aliasing artefacts in helical cone-beam CT.
螺旋锥束 CT 中的部分体积和混叠伪影。
- DOI:10.1088/0031-9155/49/11/017
- 发表时间:2004
- 期刊:
- 影响因子:3.5
- 作者:Zou,Yu;Sidky,EmilY;Pan,Xiaochuan
- 通讯作者:Pan,Xiaochuan
An exact Fourier rebinning algorithm for 3D PET imaging using panel detectors.
使用面板探测器进行 3D PET 成像的精确傅立叶重组算法。
- DOI:10.1088/0031-9155/49/11/020
- 发表时间:2004
- 期刊:
- 影响因子:3.5
- 作者:Kao,Chien-Min;Pan,Xiaochuan;Chen,Chin-Tu
- 通讯作者:Chen,Chin-Tu
Computationally efficient and statistically robust image reconstruction in three-dimensional diffraction tomography.
三维衍射断层扫描中计算高效且统计稳健的图像重建。
- DOI:10.1364/josaa.17.000391
- 发表时间:2000
- 期刊:
- 影响因子:0
- 作者:Anastasio,MA;Pan,X
- 通讯作者:Pan,X
Fourier-based approach to interpolation in single-slice helical computed tomography.
单层螺旋计算机断层扫描中基于傅立叶的插值方法。
- DOI:10.1118/1.1350583
- 发表时间:2001
- 期刊:
- 影响因子:3.8
- 作者:LaRivière,PJ;Pan,X
- 通讯作者:Pan,X
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
XIAOCHUAN PAN其他文献
XIAOCHUAN PAN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('XIAOCHUAN PAN', 18)}}的其他基金
Algorithm-Enabled Auto-Calibrating Quantitative Dual-Energy CT
支持算法的自动校准定量双能 CT
- 批准号:
10448987 - 财政年份:2022
- 资助金额:
$ 10.29万 - 项目类别:
Advanced iterative image reconstruction for digital breast tomosynthesis - Resubmission 01
用于数字乳腺断层合成的高级迭代图像重建 - 重新提交 01
- 批准号:
9978584 - 财政年份:2018
- 资助金额:
$ 10.29万 - 项目类别:
Advanced iterative image reconstruction for digital breast tomosynthesis - Resubmission 01
用于数字乳腺断层合成的高级迭代图像重建 - 重新提交 01
- 批准号:
10224861 - 财政年份:2018
- 资助金额:
$ 10.29万 - 项目类别:
36th Annual International Conference of the IEEE Engineering in Medicine and Biol
第 36 届 IEEE 医学和生物工程国际年会
- 批准号:
8720474 - 财政年份:2014
- 资助金额:
$ 10.29万 - 项目类别:
Digital Specimen Tomosynthesis for Volumetric Imaging of Lumpectomy Specimens
用于肿瘤切除标本体积成像的数字标本断层合成
- 批准号:
9085109 - 财政年份:2014
- 资助金额:
$ 10.29万 - 项目类别:
Development of Advanced C-arm Cone-Beam CT for the Treatment of Liver Cancer
先进C型臂锥束CT治疗肝癌的开发
- 批准号:
9305887 - 财政年份:2014
- 资助金额:
$ 10.29万 - 项目类别:
Digital Specimen Tomosynthesis for Volumetric Imaging of Lumpectomy Specimens
用于肿瘤切除标本体积成像的数字标本断层合成
- 批准号:
8766676 - 财政年份:2014
- 资助金额:
$ 10.29万 - 项目类别:
Development of Advanced C-arm Cone-Beam CT for the Treatment of Liver Cancer
先进C型臂锥束CT治疗肝癌的开发
- 批准号:
8616609 - 财政年份:2014
- 资助金额:
$ 10.29万 - 项目类别:
International Symposium on Biomedical Imaging: from Nano to Macro 2011 (ISBI2011)
生物医学成像国际研讨会:从纳米到宏观2011 (ISBI2011)
- 批准号:
8133639 - 财政年份:2011
- 资助金额:
$ 10.29万 - 项目类别:
31st Annual International Conference of IEEE Engineeering in Medicine and Biology
第 31 届 IEEE 医学和生物学工程国际会议
- 批准号:
7744371 - 财政年份:2009
- 资助金额:
$ 10.29万 - 项目类别:
相似海外基金
Towards more complete models and improved computer simulation tools for Liquid Composite Molding (LCM)
为液体复合成型 (LCM) 打造更完整的模型和改进的计算机模拟工具
- 批准号:
RGPIN-2022-04495 - 财政年份:2022
- 资助金额:
$ 10.29万 - 项目类别:
Discovery Grants Program - Individual
Computer simulation of yeast metabolism by data-driven ensemble modeling
通过数据驱动的集成建模对酵母代谢进行计算机模拟
- 批准号:
22H01879 - 财政年份:2022
- 资助金额:
$ 10.29万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Computer simulation studies of crystallization in structured ternary fluids
结构三元流体结晶的计算机模拟研究
- 批准号:
2717178 - 财政年份:2022
- 资助金额:
$ 10.29万 - 项目类别:
Studentship
Computer simulation of confined polymers and 2D catenated-ring networks
受限聚合物和二维链环网络的计算机模拟
- 批准号:
RGPIN-2022-03086 - 财政年份:2022
- 资助金额:
$ 10.29万 - 项目类别:
Discovery Grants Program - Individual
A computer simulation study to unveil fluid behavior of the beam-on target of a fusion neutron source
揭示聚变中子源射束目标流体行为的计算机模拟研究
- 批准号:
22K03579 - 财政年份:2022
- 资助金额:
$ 10.29万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Improving cardiac valve implant outcomes with advanced computer simulation
通过先进的计算机模拟改善心脏瓣膜植入效果
- 批准号:
nhmrc : 2002892 - 财政年份:2021
- 资助金额:
$ 10.29万 - 项目类别:
Ideas Grants
Aggregation process of amyloid-beta peptides on a membrane on a lipid membrane studied by computer simulation
计算机模拟研究淀粉样β肽在脂膜上的聚集过程
- 批准号:
21K06040 - 财政年份:2021
- 资助金额:
$ 10.29万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Computer simulation of cell polarization and migration in 3D
3D 细胞极化和迁移的计算机模拟
- 批准号:
563522-2021 - 财政年份:2021
- 资助金额:
$ 10.29万 - 项目类别:
University Undergraduate Student Research Awards
Computer Simulation of a Semiflexible Polymer Confined to a Dual-Nanocavity Geometry
限制在双纳米腔几何结构中的半柔性聚合物的计算机模拟
- 批准号:
563544-2021 - 财政年份:2021
- 资助金额:
$ 10.29万 - 项目类别:
University Undergraduate Student Research Awards
Diversity Research Supplement for Combining Experiments and Computer Simulation to Improve the Stem Cell Differentiation Process
结合实验和计算机模拟改善干细胞分化过程的多样性研究补充
- 批准号:
10550022 - 财政年份:2021
- 资助金额:
$ 10.29万 - 项目类别: