High Resolution Forecasting of Air Quality and Exposure for Healthier Cities (HiRAE)
高分辨率空气质量和暴露预测,打造更健康的城市 (HiRAE)
基本信息
- 批准号:NE/M021971/1
- 负责人:
- 金额:$ 10.67万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2015
- 资助国家:英国
- 起止时间:2015 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The University of Hertfordshire and the National Centre for Atmospheric Science currently operate an Air Quality forecasting system. Like a weather forecast, the system uses a computer model to make predictions of the concentrations of air pollutants such as Ozone, Particulate Matter and Nitrogen Oxides. The forecast runs for the whole of the UK and predicts three days into the future and it produces maps of each pollutant at a spatial resolution of 10km.Alongside the Air Quality Forecasting capability the University of Hertfordshire has also developed models and expertise in modelling air quality in urban areas. Air Quality can be highly influenced by the regional and national scale effects predicted by the Air Quality forecast but it is also influenced by very local effects such as emissions from traffic on a particular road, the local weather and even the local buildings and landscape. For this reason we have a separate system for urban areas which operates at a very high resolution. The urban system uses data that describes the pollution from individual roads for example. This urban model also has data to describe where people live and work so we can calculate pollutant concentrations in different parts of a city and at different times of day, then use that information to estimate the 'exposure' to pollution faced by the local population where they live and work. Because 'exposure' combines both pollutant levels and the time people spend in polluted areas, it is allows us to understand the likely health impact air pollution is having on the population. In this project we will forecast air quality and exposure for two urban areas, Greater Manchester and Bristol. The unique innovations in the project are to bring air quality and exposure forecasts down to the street and city scales, whilst making all the data available to the local authorities for the first time. To do this we will continue to operate the UK Air Quality Forecast and feed its predictions into the urban scale model. This will allow us to create pollution maps, a three day forecast and exposure estimates at a local scale for Bristol and Greater Manchester. The data will allow the local authorities to study air quality trends and statistics and find low pollution routes for cyclists and pedestrians. They will be able to use the data to make better planning decisions, improve education schemes and optimise pollution reduction measures to have the greatest impact. The delivery of exposure data alongside pollution concentrations is especially important for maximising the effectiveness of strategies to improve health.We will make all of the model data available to the local authorities by creating an online data dashboard. This will allow the local authorities access to all the model data via an easy to use graphical user interface. By creating the data dashboard we will remove a barrier currently preventing wider exploitation of air quality model data and unlock the potential benefits of modeled air quality data to local authorities and the general public.This project will directly address the needs of Local Authorities to meet their statutory responsibility to monitor and manage Air Quality. The responsibility for meeting EU air quality limit values is devolved to them. Our Local Authority partners, Bristol and Greater Manchester, attribute the premature death of approximately 200 and 1300 people annually to Air Quality respectively. This project will help the Bristol and Greater Manchester authorities by underpinning and informing their strategies for improving health and reducing air pollution with new, unique datasets. This data will allow the Local Authorities to optimally implement new and exiting initiatives such as promoting cycling, walking and public transport, managing goods vehicle, traffic management, low emission zones, planning guidance and education and informing the public of Air Quality health risks.
赫特福德郡大学和国家大气科学中心目前运行着一个空气质量预报系统。就像天气预报一样,该系统使用计算机模型来预测臭氧、颗粒物和氮氧化物等空气污染物的浓度。该预报覆盖整个英国,预测未来三天,并以10公里的空间分辨率绘制每种污染物的地图。除了空气质量预测能力外,赫特福德郡大学还开发了城市地区空气质量建模的模型和专业知识。空气质素受空气质素预报所预测的地区性和全国性影响很大,但也会受到非常局部的影响,例如某条道路交通所排放的废气、当地的天气,甚至当地的建筑物和景观。因此,我们对城市地区有一个单独的系统,该系统以非常高的分辨率运行。例如,城市系统使用描述个别道路污染的数据。这个城市模型还有描述人们在哪里生活和工作的数据,这样我们就可以计算城市不同地区和一天中不同时间的污染物浓度,然后使用这些信息来估计他们生活和工作的当地人口面临的污染暴露。因为“暴露”结合了污染物水平和人们在污染地区停留的时间,它使我们能够了解空气污染对人们健康的可能影响。在这个项目中,我们将预测大曼彻斯特和布里斯托尔两个城市地区的空气质量和曝光量。该项目的独特创新是将空气质量和暴露预测降低到街道和城市的规模,同时首次向地方当局提供所有数据。为了做到这一点,我们将继续运行英国空气质量预测,并将其预测输入城市规模模型。这将使我们能够为布里斯托尔和大曼彻斯特创建污染地图、三天预报和当地规模的暴露估计。这些数据将使地方当局能够研究空气质量趋势和统计数据,并为骑自行车的人和行人找到低污染路线。他们将能够利用这些数据做出更好的规划决策,改进教育计划,并优化污染减少措施,以产生最大的影响。与污染浓度一起提供暴露数据对于最大限度地提高改善健康战略的有效性尤为重要。我们将通过创建在线数据仪表板向地方当局提供所有模型数据。这将允许地方当局通过易于使用的图形用户界面访问所有模型数据。通过创建数据仪表板,我们将消除目前阻碍空气质量模型数据更广泛使用的障碍,并向地方当局和公众释放模拟空气质量数据的潜在好处。这个项目将直接满足地方当局履行其监测和管理空气质量的法定责任的需求。满足欧盟空气质量限制值的责任被移交给他们。我们的地方当局合作伙伴布里斯托尔和大曼彻斯特分别将每年约200人和1300人过早死亡的原因归因于空气质量。该项目将帮助布里斯托尔和大曼彻斯特当局通过新的、独特的数据集支持和告知他们改善健康和减少空气污染的战略。这些数据将使地方当局能够以最佳方式实施新的和现有的举措,如促进骑自行车、步行和公共交通、管理货车、交通管理、低排放区、规划指导和教育,以及告知公众空气质量健康风险。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ranjeet Sokhi其他文献
Ranjeet Sokhi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ranjeet Sokhi', 18)}}的其他基金
Process analysis, observations and modelling - Integrated solutions for cleaner air for Delhi (PROMOTE)
过程分析、观察和建模 - 德里清洁空气综合解决方案(PROMOTE)
- 批准号:
NE/P016391/1 - 财政年份:2016
- 资助金额:
$ 10.67万 - 项目类别:
Research Grant
ClearfLo: Clean Air for London
ClearfLo:伦敦清洁空气
- 批准号:
NE/H003185/1 - 财政年份:2010
- 资助金额:
$ 10.67万 - 项目类别:
Research Grant
Mesoscale Modelling for Air Pollution Applications (Meso-NET)
空气污染应用的中尺度建模 (Meso-NET)
- 批准号:
NE/E002617/1 - 财政年份:2007
- 资助金额:
$ 10.67万 - 项目类别:
Research Grant
Mesoscale Modelling for Air Pollution Applications (Meso-NET)
空气污染应用的中尺度建模 (Meso-NET)
- 批准号:
NE/E002692/1 - 财政年份:2007
- 资助金额:
$ 10.67万 - 项目类别:
Research Grant
相似海外基金
MULTI-STRESS: Quantifying the impacts of multiple stressors in multiple dimensions to improve ecological forecasting
多重压力:在多个维度量化多种压力源的影响,以改进生态预测
- 批准号:
NE/Z000130/1 - 财政年份:2024
- 资助金额:
$ 10.67万 - 项目类别:
Research Grant
LTREB: Integrating real-time open data pipelines and forecasting to quantify ecosystem predictability at day to decadal scales
LTREB:集成实时开放数据管道和预测,以量化每日到十年尺度的生态系统可预测性
- 批准号:
2327030 - 财政年份:2024
- 资助金额:
$ 10.67万 - 项目类别:
Continuing Grant
Solar Forecasting And Future Sustainable Power Systems
太阳能预测和未来可持续电力系统
- 批准号:
2908163 - 财政年份:2024
- 资助金额:
$ 10.67万 - 项目类别:
Studentship
Cross-scale forecasting of Everglades wading bird dynamics
大沼泽地涉水鸟动态的跨尺度预测
- 批准号:
2326954 - 财政年份:2024
- 资助金额:
$ 10.67万 - 项目类别:
Continuing Grant
Towards the next generation probabilistic flood forecasting system for the UK
英国下一代概率洪水预报系统
- 批准号:
2907694 - 财政年份:2024
- 资助金额:
$ 10.67万 - 项目类别:
Studentship
SBIR Phase I: Subseasonal Forecasting and Climate Risk Analytics Combining Physics and AI
SBIR 第一阶段:结合物理和人工智能的次季节预报和气候风险分析
- 批准号:
2335210 - 财政年份:2024
- 资助金额:
$ 10.67万 - 项目类别:
Standard Grant
EAGER: IMPRESS-U: Modeling and Forecasting of Infection Spread in War and Post War Settings Using Epidemiological, Behavioral and Genomic Surveillance Data
EAGER:IMPRESS-U:使用流行病学、行为和基因组监测数据对战争和战后环境中的感染传播进行建模和预测
- 批准号:
2412914 - 财政年份:2024
- 资助金额:
$ 10.67万 - 项目类别:
Standard Grant
Solar forecasting and future sustainable power systems
太阳能预测和未来可持续电力系统
- 批准号:
2905679 - 财政年份:2024
- 资助金额:
$ 10.67万 - 项目类别:
Studentship
Integrating and scaling seasonal climate-driven dengue forecasting
整合和扩展季节性气候驱动的登革热预测
- 批准号:
MR/Y004663/1 - 财政年份:2024
- 资助金额:
$ 10.67万 - 项目类别:
Research Grant
Water IMPACT: Water emissions forecasting tool to Introduce the Modelling Potential of water quality Actions to reach Climate-change Targets
水影响:水排放预测工具,介绍水质建模潜力 实现气候变化目标的行动
- 批准号:
10103499 - 财政年份:2024
- 资助金额:
$ 10.67万 - 项目类别:
Collaborative R&D