Process analysis, observations and modelling - Integrated solutions for cleaner air for Delhi (PROMOTE)
过程分析、观察和建模 - 德里清洁空气综合解决方案(PROMOTE)
基本信息
- 批准号:NE/P016391/1
- 负责人:
- 金额:$ 93.09万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2016
- 资助国家:英国
- 起止时间:2016 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Title: Process analysis, observations and modelling - Integrated solutions for cleaner air for Delhi (PROMOTE)Air pollution has been widely recognized as a major global health risk. Given that 1 in every 10 total deaths can be attributed to air pollution (World Bank 2016), there are major implications for the cities of the world. As part of the Indo-Gangetic Plain (IGP), Delhi is subject to air pollution from a complex mixture of sources. As a consequence of the complex emissions and meteorology of the region, particulate matter (PM as PM10 and PM2.5), nitrogen oxides (NOx, NO2), sulphur dioxide (SO2), carbon monoxide (CO) and black carbon (BC) all peak during post-monsoon periods and remain elevated during winter making the National Capital Region (NCR) one of the most polluted areas. Open questions remain regarding the inability of models to accurately predict air pollution during winter time fog events and quantifying incoming air pollution from large distances into Delhi.Over 4 years, PROMOTE aims to reduce uncertainties in air quality prediction and forecasting for Delhi by undertaking process orientated observational and modelling analyses and to derive the most effective mitigation solutions for reducing air pollution over the urban and surrounding region. PROMOTE brings together a cross-disciplinary team of leading researchers from India and the UK to deliver the project aims. Its investigations will address three key questions:Q1 What contribution is made by aerosols to the air pollution burden in Delhi?Q2 How does the lower atmospheric boundary layer affect the long range transport of air pollution incoming into Delhi?Q3 What are the most effective emission controls for mitigation interventions that will lead to significant reductions in air pollution and exposure levels over Delhi and the wider National Capital Region? To address the three key questions we will:1 Examine the contribution of secondary aerosols to the air pollution burden in Delhi during distinct meteorological seasons by developing a new representative model scheme for subtropical urban environments;2 Investigate how boundary layer interactions lead to high air pollution events during pre-monsoon and stable winter fog periods affecting Delhi; 3 Quantify local, urban and regional contributions to Delhi's air quality through an improved understanding of aerosols, long-range transport and boundary layer processes;4 Test the Delhi's air quality forecasting system incorporating improved understanding of aerosol pollution and atmospheric boundary layer processs;5 Develop the first multiscale modelling system for predicting high resolution concentrations of PM2.5, PM10, NO2 and other pollutants and then provide the analysis for developing effective mitigation strategies for Delhi;6 Synthesise and translate the outcomes of PROMOTE with other APHH projects to provide datasets for exposure and health studies and contribute to a roadmap for implementing effective local and regional mitigation strategies to meet current and future compliance and health requirements in Delhi and NCR. Through our analysis, we will deliver new knowledge on how local, urban and regional (LRT) sources of air pollution affect Delhi's air quality. With an improved understanding of aerosols and lower atmosphere dynamics, sensitivities between air pollutant concentrations and changes in local (e.g. traffic, industrial) and regional contributions will be quantified with a new multiscale modelling system for recommending interventions and mitigation options for Delhi.
标题:过程分析、观察和建模——德里清洁空气的综合解决方案(促进局)空气污染已被广泛认为是一项主要的全球健康风险。鉴于每10例死亡中就有1例可归因于空气污染(世界银行,2016年),这对世界各地的城市都有重大影响。作为印度-恒河平原(IGP)的一部分,德里受到来自各种复杂来源的空气污染。由于该地区复杂的排放和气象,颗粒物(PM如PM10和PM2.5)、氮氧化物(NOx、NO2)、二氧化硫(SO2)、一氧化碳(CO)和黑碳(BC)都在季风后达到峰值,并在冬季保持升高,使国家首都地区(NCR)成为污染最严重的地区之一。关于模型无法准确预测冬季雾事件期间的空气污染,以及无法量化从远距离进入德里的空气污染,仍然存在悬而未决的问题。在4年的时间里,PROMOTE的目标是通过开展面向过程的观测和建模分析,减少德里空气质量预测和预报的不确定性,并得出最有效的缓解解决方案,以减少城市和周边地区的空气污染。PROMOTE汇集了一个由来自印度和英国的主要研究人员组成的跨学科团队,以实现该项目的目标。其调查将解决三个关键问题:Q1气溶胶对德里的空气污染负担有何贡献?低层大气边界层如何影响进入德里的空气污染的远距离输送?Q3对于缓解干预措施而言,什么是最有效的排放控制措施,可显著减少德里和更广泛的国家首都地区的空气污染和暴露水平?为了解决三个关键问题,我们将:1通过开发一个新的亚热带城市环境代表性模式方案,研究在不同气象季节,次生气溶胶对德里空气污染负担的贡献;2 .研究边界层相互作用如何导致影响德里的季风前高空气污染事件和稳定的冬季雾期;通过提高对气溶胶、远距离输送和边界层过程的理解,量化当地、城市和区域对德里空气质量的贡献;4 .测试德里的空气质量预报系统,该系统将改进对气溶胶污染和大气边界层过程的理解;5 .开发首个多尺度模拟系统,用于预测PM2.5、PM10、二氧化氮和其他污染物的高分辨率浓度,然后为制定德里的有效缓解战略提供分析;6综合和转化促进项目与其他卫生保健项目的成果,为接触和健康研究提供数据集,并有助于制定实施有效的地方和区域缓解战略的路线图,以满足德里和NCR当前和未来的合规和健康要求。通过我们的分析,我们将提供有关本地、城市和区域(LRT)空气污染源如何影响德里空气质量的新知识。随着对气溶胶和低层大气动力学的进一步了解,空气污染物浓度与当地(如交通、工业)和区域贡献变化之间的敏感性将通过一个新的多尺度建模系统进行量化,为德里推荐干预措施和缓解方案。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Quantifying effects of long-range transport of air pollutants over Delhi using back-trajectories and satellite NO 2 data
使用反向轨迹和卫星 NO 2 数据量化德里上空空气污染物远距离输送的影响
- DOI:10.5194/egusphere-2023-382
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Graham A
- 通讯作者:Graham A
COVID-19 lockdown induced changes in NO<sub>2</sub> levels across India observed by multi-satellite and surface observations
COVID-19 封锁导致 NO 发生变化
- DOI:10.5194/acp-2020-1023
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Biswal A
- 通讯作者:Biswal A
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ranjeet Sokhi其他文献
Ranjeet Sokhi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ranjeet Sokhi', 18)}}的其他基金
High Resolution Forecasting of Air Quality and Exposure for Healthier Cities (HiRAE)
高分辨率空气质量和暴露预测,打造更健康的城市 (HiRAE)
- 批准号:
NE/M021971/1 - 财政年份:2015
- 资助金额:
$ 93.09万 - 项目类别:
Research Grant
ClearfLo: Clean Air for London
ClearfLo:伦敦清洁空气
- 批准号:
NE/H003185/1 - 财政年份:2010
- 资助金额:
$ 93.09万 - 项目类别:
Research Grant
Mesoscale Modelling for Air Pollution Applications (Meso-NET)
空气污染应用的中尺度建模 (Meso-NET)
- 批准号:
NE/E002617/1 - 财政年份:2007
- 资助金额:
$ 93.09万 - 项目类别:
Research Grant
Mesoscale Modelling for Air Pollution Applications (Meso-NET)
空气污染应用的中尺度建模 (Meso-NET)
- 批准号:
NE/E002692/1 - 财政年份:2007
- 资助金额:
$ 93.09万 - 项目类别:
Research Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Intelligent Patent Analysis for Optimized Technology Stack Selection:Blockchain BusinessRegistry Case Demonstration
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
利用全基因组关联分析和QTL-seq发掘花生白绢病抗性分子标记
- 批准号:31971981
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
基于SERS纳米标签和光子晶体的单细胞Western Blot定量分析技术研究
- 批准号:31900571
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
利用多个实验群体解析猪保幼带形成及其自然消褪的遗传机制
- 批准号:31972542
- 批准年份:2019
- 资助金额:57.0 万元
- 项目类别:面上项目
基于Meta-analysis的新疆棉花灌水增产模型研究
- 批准号:41601604
- 批准年份:2016
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
基于个体分析的投影式非线性非负张量分解在高维非结构化数据模式分析中的研究
- 批准号:61502059
- 批准年份:2015
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
多目标诉求下我国交通节能减排市场导向的政策组合选择研究
- 批准号:71473155
- 批准年份:2014
- 资助金额:60.0 万元
- 项目类别:面上项目
大规模微阵列数据组的meta-analysis方法研究
- 批准号:31100958
- 批准年份:2011
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
基于物质流分析的中国石油资源流动过程及碳效应研究
- 批准号:41101116
- 批准年份:2011
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Exploring the Deep Universe by Computational Analysis of Data from Observations
通过观测数据的计算分析探索宇宙深处
- 批准号:
EP/Y031032/1 - 财政年份:2024
- 资助金额:
$ 93.09万 - 项目类别:
Research Grant
Understanding the Internal Structure and Near-Storm Environments of Supercells via Innovative Analysis of Targeted Observation by Radars and UAS of Supercells (TORUS) Observations
通过对超级单体(TORUS)观测的雷达和无人机定向观测的创新分析,了解超级单体的内部结构和近风暴环境
- 批准号:
2312090 - 财政年份:2023
- 资助金额:
$ 93.09万 - 项目类别:
Standard Grant
A study of super-parallel data analysis method for CMB polarimetric observations to improve the sensitivity of inflation detection
CMB极化观测超并行数据分析方法提高暴胀检测灵敏度的研究
- 批准号:
23KJ1602 - 财政年份:2023
- 资助金额:
$ 93.09万 - 项目类别:
Grant-in-Aid for JSPS Fellows
The Impact of Gossip on Children's Feelings of Belongingness
八卦对儿童归属感的影响
- 批准号:
10600279 - 财政年份:2023
- 资助金额:
$ 93.09万 - 项目类别:
Exploring the Structure near Black Holes using Millisecond Timing, Spectral X-Ray Observations, and Advanced Data Analysis Techniques
使用毫秒定时、光谱 X 射线观测和高级数据分析技术探索黑洞附近的结构
- 批准号:
22KJ1431 - 财政年份:2023
- 资助金额:
$ 93.09万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Observations and Analysis Throughflow Indonesian Seas, Upwelling, and Mixing Physics (TRIUMPH) Data
印度尼西亚海域通流、上升流和混合物理 (TRIUMPH) 数据的观测和分析
- 批准号:
2242151 - 财政年份:2023
- 资助金额:
$ 93.09万 - 项目类别:
Standard Grant
Analysis of mechanical properties of interfaces by in situ TEM nano-dynamics observations
通过原位 TEM 纳米动力学观察分析界面的机械性能
- 批准号:
22H00255 - 财政年份:2022
- 资助金额:
$ 93.09万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Quantitative analysis of solidification dynamics by time-resolved in-situ observations
通过时间分辨原位观测对凝固动力学进行定量分析
- 批准号:
22H00264 - 财政年份:2022
- 资助金额:
$ 93.09万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Empowering Latinas to Obtain Guideline-Concordant Breast Cancer Screenings
帮助拉丁裔获得符合指南的乳腺癌筛查
- 批准号:
10518742 - 财政年份:2022
- 资助金额:
$ 93.09万 - 项目类别: