The Environments of Convective Storms: Challenging Conventional Wisdom

对流风暴的环境:挑战传统智慧

基本信息

  • 批准号:
    NE/N003918/1
  • 负责人:
  • 金额:
    $ 35.25万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2016
  • 资助国家:
    英国
  • 起止时间:
    2016 至 无数据
  • 项目状态:
    已结题

项目摘要

Large thunderstorms are one of the most damaging of weather phenomena. Hail can devastate crops, flash flooding can inundate towns and homes, lightning can threaten people and ignite fires, and strong gusts can damage transport and infrastructure. Convective storms and associated phenomena cause 5-8 billion euro per year in damage across Europe. Such storms have the potential to be forecast and the public warned beforehand, but forecasting becomes increasingly difficult as the length of a forecast increases. In the near-term, observations and high-resolution computer modelling can provide adequate warning of impending storms, but for periods longer than three days ahead the outbreak of thunderstorms has to be deduced indirectly from the computer forecast even if the large-scale flow is well forecasted. The aim of this project is to improve our understanding of the relationship between thunderstorms (also called convective storms) and the larger-scale environment in the atmosphere, to provide better understanding of the physical processes responsible to aid forecasters in interpreting the model predictions.Convective storms require three ingredients: sufficient moisture to condense and fuel the storm, instability or the rate at which temperature decreases with height (temperature dropping quickly with height is better), and something to lift air to release the instability. In this proposal, we focus on the instability ingredient.In the United States, environments with large instability are believed to occur because of heating over the elevated terrain of the western United States, resulting in the elevated mixed-layer (EML). In Europe, EMLs are attributed to passage over the elevated terrain of central Spain, resulting in the Spanish plume. Such sensible heating of lower-tropospheric air (3-5 km above sea level) by an elevated heat source such as the Rockies or Spanish plateau is a natural explanation for the steep lapse rates in the EML.How much of a contribution is the elevated heating to the formation of instability? The smaller scale of the Spanish high terrain compared to the Rocky Mountains makes it difficult to imagine that the Spanish high terrain creates such large instability. One hypothesis for the origin of the steep lapse rates is the Sahara Desert, where a well-mixed boundary layer forms steep lapse rates that can be advected away from northern Africa (known as the Saharan Air Layer). Yet, this hypothesis has not been tested, either for the Spanish plume or other regions downstream of high heated terrain. A different factor said to explain the occurrence of instability is the differential transport of air with low temperature or low moisture aloft. Although such explanations have been used in the literature, other studies have questioned the applicability of this factor. Our proposed research asks what processes produce the environment for midlatitude convective storms around the globe. What environments are favourable for instability, and how does this differ around the globe? What are the physical processes that create instability? Is instability - in Europe generally and the UK specifically - attributed to elevated heating, as in the EML of the central United States or by long-range transport? Despite conventional wisdom stating that the elevated mixed layer is responsible for creating the instability downstream of high terrain, it remains untested. Our aim in this proposal is to develop a better understanding of the relationship between high terrain, large-scale processes, and instability for midlatitude convective storms. These concerns motivate a multifaceted research project to answer these questions. Q1: What are the physical processes responsible for creating instability?Q2: How does topography create a favourable environment for deep moist convection?Q3: How important is differential temperature and moisture advection to creating instability?
大雷雨是最具破坏性的天气现象之一。冰雹可能使州农作物受损,山洪暴发可能淹没城镇和房屋,闪电可能威胁到人们并引发火灾,强烈的阵风可能破坏交通和基础设施。对流风暴和相关现象每年在整个欧洲造成50 - 80亿欧元的损失。这样的风暴有可能被预报,公众也有可能事先得到警告,但随着预报时间的延长,预报变得越来越困难。在短期内,观测和高分辨率计算机模拟可以对即将来临的风暴提供足够的警报,但对于未来三天以上的时间,即使大规模气流得到了很好的预报,雷暴的爆发也必须从计算机预报中间接推断出来。这个项目的目的是提高我们对雷暴之间关系的理解(也称为对流风暴)和大气中的大尺度环境,以更好地了解负责帮助预报员解释模式预测的物理过程。对流风暴需要三个要素:足够的水分凝结和燃料风暴,不稳定或温度随高度下降的速度(温度随高度迅速下降更好),还有一些提升空气以释放不稳定性的东西。在这个建议中,我们专注于不稳定的成分。在美国,大的不稳定的环境被认为是发生在美国西部的高架地形加热,导致在高架混合层(EML)。在欧洲,EML是由于通过西班牙中部的高地,导致西班牙羽流。这种由落基山脉或西班牙高原等升高的热源对低对流层空气(海平面以上3-5 km)的显热是EML中陡峭的直减率的自然解释。升高的加热对不稳定的形成有多大的贡献?与落基山脉相比,西班牙高地的规模较小,很难想象西班牙高地会产生如此大的不稳定性。关于陡峭的直减率的起源的一个假设是撒哈拉沙漠,在那里,一个混合良好的边界层形成了陡峭的直减率,可以从北方非洲平流(称为撒哈拉空气层)。然而,这一假设尚未得到验证,无论是西班牙羽或其他地区的下游高温地形。另一个解释不稳定性发生的因素是高空低温或低湿度空气的差异输送。虽然这种解释已经在文献中使用,但其他研究质疑这一因素的适用性。我们提出的研究问题是什么过程产生了地球仪周围中纬度对流风暴的环境。哪些环境有利于不稳定,这在地球仪各地有何不同?造成不稳定的物理过程是什么?不稳定性--在欧洲,特别是在英国--是归因于升温,如美国中部的EML,还是归因于长距离传输?尽管传统观点认为,混合层升高是造成高地形下游不稳定的原因,但这一观点仍未得到证实。我们在这个建议中的目的是发展一个更好的理解高地形,大尺度过程,和中纬度对流风暴的不稳定性之间的关系。这些问题促使一个多方面的研究项目来回答这些问题。Q1:造成不稳定的物理过程是什么?地形如何为深层湿对流创造有利的环境?问题3:温差和湿度平流对产生不稳定有多重要?

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Synoptic-Scale Environments and Precipitation Morphologies of Tornado Outbreaks from Quasi-Linear Convective Systems in the United Kingdom
英国准线性对流系统龙卷风爆发的天气尺度环境和降水形态
  • DOI:
    10.1175/waf-d-20-0021.1
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Buckingham T
  • 通讯作者:
    Buckingham T
Lightning-Related Fatalities in Romania from 1999 to 2015
1999 年至 2015 年罗马尼亚因闪电造成的死亡人数
  • DOI:
    10.1175/wcas-d-17-0091.1
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Antonescu B
  • 通讯作者:
    Antonescu B
Origin of Strong Winds in an Explosive Mediterranean Extratropical Cyclone
  • DOI:
    10.1175/mwr-d-19-0009.1
  • 发表时间:
    2019-09
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    M. Brâncuş;D. Schultz;B. Antonescu;C. Dearden;S. Stefan
  • 通讯作者:
    M. Brâncuş;D. Schultz;B. Antonescu;C. Dearden;S. Stefan
Hindcasting the First Tornado Forecast in Europe: 25 June 1967
欧洲首次龙卷风预报:1967 年 6 月 25 日
  • DOI:
    10.1175/waf-d-19-0173.1
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Antonescu B
  • 通讯作者:
    Antonescu B
Theories on Tornado and Waterspout Formation in Ancient Greece and Rome
古希腊和罗马的龙卷风和水龙卷形成理论
  • DOI:
    10.1175/wcas-d-19-0057.1
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Antonescu B
  • 通讯作者:
    Antonescu B
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

David Schultz其他文献

Laboratory Astrophysics White Paper (based on the 2010 NASA Laboratory Astrophysics Workshop in Gatlinberg, Tennessee, 25-28 October 2010)
实验室天体物理学白皮书(基于 2010 年 10 月 25 日至 28 日在田纳西州加特林伯格举行的 2010 年 NASA 实验室天体物理学研讨会)
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    D. Savin;L. Allamandola;S. Federman;P. Goldsmith;C. Kilbourne;Karin Oberg;David Schultz;S. W. Weaver;H. Ji;B. Remington
  • 通讯作者:
    B. Remington
IceProd 2: A Next Generation Data Analysis Framework for the IceCube Neutrino Observatory
IceProd 2:IceCube 中微子观测站的下一代数据分析框架
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    David Schultz
  • 通讯作者:
    David Schultz
Measuring disease activity and predicting response to intravenous immunoglobulin in chronic inflammatory demyelinating polyneuropathy
  • DOI:
    10.1186/s40364-019-0154-2
  • 发表时间:
    2019-02-12
  • 期刊:
  • 影响因子:
    11.500
  • 作者:
    Anthony Khoo;Joseph Frasca;David Schultz
  • 通讯作者:
    David Schultz
Techniques for the analysis of trichome Pelagonium xhortorum expressed sequence tags
  • DOI:
    10.1186/1471-2105-9-s7-p25
  • 发表时间:
    2008-07-08
  • 期刊:
  • 影响因子:
    3.300
  • 作者:
    Joseph Morris;Eric Rouchka;David Schultz
  • 通讯作者:
    David Schultz
Demand-driven provisioning of Kubernetes-like resources in OSG
OSG 中类似 Kubernetes 资源的需求驱动配置
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    I. Sfiligoi;F. Würthwein;J. Dost;B. Lin;David Schultz
  • 通讯作者:
    David Schultz

David Schultz的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('David Schultz', 18)}}的其他基金

Improving Understanding and Diagnosis of Jet-Stream Turbulence
提高对急流湍流的理解和诊断
  • 批准号:
    NE/W000997/1
  • 财政年份:
    2022
  • 资助金额:
    $ 35.25万
  • 项目类别:
    Research Grant
Convective-Scale Impacts of Deforestation on Amazonian Rainfall
森林砍伐对亚马逊降雨的对流规模影响
  • 批准号:
    NE/V012681/1
  • 财政年份:
    2021
  • 资助金额:
    $ 35.25万
  • 项目类别:
    Research Grant
Collaborative Research: Data Infrastructure for Open Science in Support of LIGO and IceCube
合作研究:支持 LIGO 和 IceCube 的开放科学数据基础设施
  • 批准号:
    1841479
  • 财政年份:
    2018
  • 资助金额:
    $ 35.25万
  • 项目类别:
    Standard Grant
SBIR RAPID: Filovirus Ebola Simulants to help improve the effectiveness and reliability of personal protective equipment for protection from Ebola exposure.
SBIR RAPID:丝状病毒埃博拉模拟物有助于提高个人防护设备的有效性和可靠性,以防止接触埃博拉病毒。
  • 批准号:
    1506898
  • 财政年份:
    2015
  • 资助金额:
    $ 35.25万
  • 项目类别:
    Standard Grant
SBIR Phase I: High Throughput Silver Nanowire Manufacturing
SBIR 第一阶段:高通量银纳米线制造
  • 批准号:
    1248916
  • 财政年份:
    2013
  • 资助金额:
    $ 35.25万
  • 项目类别:
    Standard Grant
PRESTO: PREcipitation STructures over Orography.
PRESTO:地形上的降水结构。
  • 批准号:
    NE/I026545/1
  • 财政年份:
    2012
  • 资助金额:
    $ 35.25万
  • 项目类别:
    Research Grant
SBIR(RAPID):Super-Oleophilic Absorbent for Efficient Oil Contamination Clean-up
SBIR(RAPID):超亲油吸收剂,可有效清除油污
  • 批准号:
    1049529
  • 财政年份:
    2010
  • 资助金额:
    $ 35.25万
  • 项目类别:
    Standard Grant
STTR Phase II: Abrasion Resistant Ultrahydrophobic Coatings for Corrosion, Erosion and Wear Resistance
STTR 第二阶段:耐磨超疏水涂层,具有耐腐蚀、冲蚀和耐磨性
  • 批准号:
    0924684
  • 财政年份:
    2009
  • 资助金额:
    $ 35.25万
  • 项目类别:
    Standard Grant
SBIR Phase I: Nanomaterial-Based Room Temperature Conductive Paste
SBIR第一期:纳米材料基室温导电浆料
  • 批准号:
    0839504
  • 财政年份:
    2009
  • 资助金额:
    $ 35.25万
  • 项目类别:
    Standard Grant
High-throughput Biological-assays Via Single Molecule Labeling and Detection
通过单分子标记和检测进行高通量生物测定
  • 批准号:
    9876651
  • 财政年份:
    1999
  • 资助金额:
    $ 35.25万
  • 项目类别:
    Standard Grant

相似海外基金

Rapid-scan Polarimetric Radar Data Collection and Analysis of the Wind Field in Severe Convective Storms and Tornadoes
强对流风暴和龙卷风风场的快速扫描偏振雷达数据采集和分析
  • 批准号:
    2214926
  • 财政年份:
    2023
  • 资助金额:
    $ 35.25万
  • 项目类别:
    Standard Grant
Future changes in convective storms across Africa in new km-scale climate scenarios
新的公里级气候情景下非洲对流风暴的未来变化
  • 批准号:
    2889514
  • 财政年份:
    2023
  • 资助金额:
    $ 35.25万
  • 项目类别:
    Studentship
Collaborative Research: Comparison between In-situ and Polarimetric Radar Hail Observations in Convective Storms
合作研究:对流风暴中原位和偏振雷达冰雹观测的比较
  • 批准号:
    2221719
  • 财政年份:
    2022
  • 资助金额:
    $ 35.25万
  • 项目类别:
    Standard Grant
Convective storms, tropical circulation and climate change
对流风暴、热带环流和气候变化
  • 批准号:
    2743345
  • 财政年份:
    2022
  • 资助金额:
    $ 35.25万
  • 项目类别:
    Studentship
Collaborative Research: Combining Self-organized Maps and Idealized Storm-scale Simulations to Investigate the Effect of Future Climate Change on Severe Convective Storms
合作研究:结合自组织地图和理想化风暴规模模拟来研究未来气候变化对强对流风暴的影响
  • 批准号:
    2209052
  • 财政年份:
    2022
  • 资助金额:
    $ 35.25万
  • 项目类别:
    Standard Grant
Collaborative Research: Combining Self-organized Maps and Idealized Storm-scale Simulations to Investigate the Effect of Future Climate Change on Severe Convective Storms
合作研究:结合自组织地图和理想化风暴规模模拟来研究未来气候变化对强对流风暴的影响
  • 批准号:
    2209699
  • 财政年份:
    2022
  • 资助金额:
    $ 35.25万
  • 项目类别:
    Standard Grant
Collaborative Research: Comparison between In-situ and Polarimetric Radar Hail Observations in Convective Storms
合作研究:对流风暴中原位和偏振雷达冰雹观测的比较
  • 批准号:
    2221720
  • 财政年份:
    2022
  • 资助金额:
    $ 35.25万
  • 项目类别:
    Standard Grant
UNSEEN, most extreme, severe convective storms
前所未见、最极端、最严重的对流风暴
  • 批准号:
    2613924
  • 财政年份:
    2021
  • 资助金额:
    $ 35.25万
  • 项目类别:
    Studentship
Understanding the Consequences of Interactions between Deep Convective Storms and Large Cities
了解深对流风暴与大城市之间相互作用的后果
  • 批准号:
    1953791
  • 财政年份:
    2020
  • 资助金额:
    $ 35.25万
  • 项目类别:
    Standard Grant
Enhanced Radar Studies of Severe Convective Storms and Tornadoes
强对流风暴和龙卷风的增强雷达研究
  • 批准号:
    1947146
  • 财政年份:
    2020
  • 资助金额:
    $ 35.25万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了