NEURAL AND COMPUTATIONAL PRINCIPLES UNDERLYING SOCIAL VS NON-SOCIAL DECISION MAKING
社会与非社会决策背后的神经和计算原理
基本信息
- 批准号:2286311
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2019
- 资助国家:英国
- 起止时间:2019 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Most strategic decisions occur under considerable uncertainty. For example, when investing in the stock market, a trader may use purely probabilistic models to estimate risk in the market's fluctuations. In contrast, when negotiating a deal in person, the trader's risk assessment may rely instead on how trustworthy the other party appears. In standard utility models, the rules governing such decisions are the same, regardless of the source of uncertainty (e.g. human vs on-line platform). However, recent advances in social neuroscience suggest that separate brain networks might distinctly process probabilistic and social information, possibly leading to different outcomes. To date, there is no unified framework for integrating social and non-social sources of decision uncertainty as previous studies looked at these factors in isolation. This shortcoming is mainly due to the interdisciplinary nature of the endeavour, which requires major methodological developments in experimental design and brain analytics. Here, we will combine two popular brain imaging techniques (EEG-fMRI), with novel experimental design and computational modelling to obtain information on when, where and how the brain processes social and non-social information during decision-making. We will investigate two different phases of the decision process: (1) the choice-phase, where decision alternatives are evaluated and compared to guide action and (2) the outcome-phase, where expected reward and risk signals are computed to update future expectations. We will model the integration of social and non-social forms of uncertainty at each stage and characterise the computational principles of the relevant neural systems. In doing so, we will place new, neurobiologically-derived, constraints on decision-theoretic models of information integration. The marriage of social and non-social forms of uncertainty into a comprehensive theory of decision-making promises to significantly improve our understanding of important real-life events, ranging from policy making and risk management to informing individual decisions on health behaviours and savings strategies. The current project will look more closely into how people predict and learn from others' actions. And especially how we predict risk-taking in others and what are the responsible brain mechanisms. According to game theory players construct a model of others' behaviours and subsequently choose the best strategy that would maximise their rewards and minimise their losses. To decide on their best action each player either learns from the frequency of the other's actions or simulates the current state of the other player. Such predictions when violated produce the 'state prediction error', which occurs when there are unexpected changes in the environment. When predictions are made, and behaviour from the opponent is observed, participants update their current knowledge according to the difference between the predicted and the observed outcomes. This is termed 'simulated other's action prediction error' (sAPE). The simulated predictions are usually based on a player's preferences and values, with addition to knowledge about the other opponent (based on experiences and belief learning). Some outstanding questions are: what are the brain correlates of mental simulation during social decision making? Are the brain signals responsible for prediction error in decision making for oneself similar to predicting others' decisions? Are there specific brain areas and processes for simulating others' prediction error, or do they overlap with the areas for prediction error for oneself? The current PhD project will aim to answer some of these questions with using computational models and either fMRI, EEG or both simultaneously.
大多数战略决策都是在相当大的不确定性下做出的。例如,当投资于股票市场时,交易者可能会使用纯粹的概率模型来估计市场波动的风险。相比之下,当亲自谈判交易时,交易员的风险评估可能会依赖于对方的可信度。在标准的效用模型中,管理这些决策的规则是相同的,不管不确定性的来源是什么(例如,人类还是在线平台)。然而,社会神经科学的最新进展表明,不同的大脑网络可能会不同地处理概率和社会信息,可能导致不同的结果。到目前为止,还没有统一的框架来整合决策不确定性的社会和非社会来源,因为以前的研究孤立地看待这些因素。这一缺陷主要是由于这项工作的跨学科性质,这需要在实验设计和大脑分析方面取得重大的方法学进展。在这里,我们将结合联合收割机两种流行的脑成像技术(脑电图功能磁共振成像),与新颖的实验设计和计算建模,以获得信息的时候,在哪里以及如何大脑处理社会和非社会信息在决策过程中。我们将研究决策过程的两个不同阶段:(1)选择阶段,评估和比较决策方案以指导行动;(2)结果阶段,计算预期的回报和风险信号以更新未来的预期。我们将在每个阶段对社会和非社会形式的不确定性的整合进行建模,并解释相关神经系统的计算原理。在这样做的过程中,我们将放置新的,神经生物学衍生的,信息集成的决策理论模型的约束。将社会和非社会形式的不确定性结合到一个全面的决策理论中,有望大大提高我们对重要现实生活事件的理解,从政策制定和风险管理到为个人健康行为和储蓄策略的决策提供信息。目前的项目将更仔细地研究人们如何预测和学习他人的行动。尤其是我们如何预测他人的冒险行为,以及负责的大脑机制是什么。根据博弈论,参与者构建了一个其他人行为的模型,然后选择最佳策略,使他们的回报最大化,损失最小化。为了决定他们的最佳行动,每个玩家要么从其他玩家的行动频率中学习,要么模拟其他玩家的当前状态。这种预测在被违反时会产生“状态预测错误”,当环境中出现意外变化时会发生这种错误。当做出预测并观察对手的行为时,参与者根据预测结果和观察结果之间的差异更新他们当前的知识。这被称为“模拟他人行为预测误差”(sAPE)。模拟预测通常基于玩家的偏好和价值观,以及关于其他对手的知识(基于经验和信念学习)。一些突出的问题是:在社会决策过程中,心理模拟与大脑有什么关系?在为自己做决定时,大脑信号是否与预测他人的决定相似?是否有特定的大脑区域和过程来模拟别人的预测错误,或者它们与自己预测错误的区域重叠?目前的博士项目将致力于通过使用计算模型和fMRI,EEG或同时使用两者来回答其中的一些问题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似国自然基金
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: PPoSS: LARGE: Principles and Infrastructure of Extreme Scale Edge Learning for Computational Screening and Surveillance for Health Care
合作研究:PPoSS:大型:用于医疗保健计算筛查和监视的超大规模边缘学习的原理和基础设施
- 批准号:
2406572 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant
Computational, anatomical, and molecular principles of system-wide visual encoding
全系统视觉编码的计算、解剖和分子原理
- 批准号:
10676656 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Collaborative Research: PPoSS: LARGE: Principles and Infrastructure of Extreme Scale Edge Learning for Computational Screening and Surveillance for Health Care
合作研究:PPoSS:大型:用于医疗保健计算筛查和监视的超大规模边缘学习的原理和基础设施
- 批准号:
2118953 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Continuing Grant
CRCNS: Computational principles of mental simulation in the entorhinal and parietal cortex
CRCNS:内嗅和顶叶皮层心理模拟的计算原理
- 批准号:
10396142 - 财政年份:2021
- 资助金额:
-- - 项目类别:
“CRCNS: Computational principles of memory based decision making in Drosophila”
–CRCNS:果蝇基于记忆的决策的计算原理 –
- 批准号:
10456950 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Machine Learning and Control Principles for Computational Biology
计算生物学的机器学习和控制原理
- 批准号:
10707916 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Machine Learning and Control Principles for Computational Biology
计算生物学的机器学习和控制原理
- 批准号:
10276879 - 财政年份:2021
- 资助金额:
-- - 项目类别:
“CRCNS: Computational principles of memory based decision making in Drosophila”
–CRCNS:果蝇基于记忆的决策的计算原理 –
- 批准号:
10653144 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Computational systems biology: Design principles of protein networks
计算系统生物学:蛋白质网络的设计原理
- 批准号:
562430-2021 - 财政年份:2021
- 资助金额:
-- - 项目类别:
University Undergraduate Student Research Awards
Collaborative Research: PPoSS: LARGE: Principles and Infrastructure of Extreme Scale Edge Learning for Computational Screening and Surveillance for Health Care
合作研究:PPoSS:大型:用于医疗保健计算筛查和监视的超大规模边缘学习的原理和基础设施
- 批准号:
2119299 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Continuing Grant