Squeezed states metrology for THz time-domain spectroscopy.

太赫兹时域光谱的压缩态计量。

基本信息

  • 批准号:
    2441577
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Studentship
  • 财政年份:
    2021
  • 资助国家:
    英国
  • 起止时间:
    2021 至 无数据
  • 项目状态:
    未结题

项目摘要

Abstract. The project I have discussed with Dr Clerici targets the use of quantum optics to improve the sensitivity of time-resolved measurements of electromagnetic radiation. Specifically, it aims at developing quantum-enhanced metrology tools to detect weak Terahertz-frequency (THz) waveforms. The THz region of the electromagnetic spectrum is technologically important for applications in spectroscopy (for instance hazardous gasses and explosives), security (imaging trough packaging materials) and pharmaceutics (quality control). This spectral region is, however, hard to access due to the limited availability of sensitive detectors. In my PhD project I will investigate techniques to use quantum optics to improve the state of the art of THZ time-domain spectroscopy[1]. Background. Electro-Optical Sampling (EOS) is a commonly employed method where a short laser pulse is used to measure the change in refractive index caused by the unknown field in a second-order nonlinear crystal (electro-optical effect)[2]. This technique allows to record THz radiation directly in the time domain and delivers the radiation spectrum by obtaining the Fourier transform. The sensitivity of this technique is limited by the standard quantum limit and cannot be further improved without the use of non-classical radiation. When measuring a quantity using an average number of photons N, in the best case, i.e. if no other sources of noise are present, our measurement will be affected by an error that is proportional to the sensitivity. Classical metrology is limited by this bound, known as the standard quantum limit. Increasing the number of photons, and hence the probe pulse intensity, improves the sensitivity of the measurement. In the case of EOS-based THz detection, the probe intensity can only be increased up to a limit that is imposed by the onset of nonlinear noise. To further increase the sensitivity, quantum correlated states can be utilised to reduce the error proportionality to,which is the Heisenberg limit. In my PhD project I will aim at attaining a Heisenberg-limited THz detection using squeezed states of light. Methodology. EOS is a phase measurement where the electric field is measured at a specific temporal coordinate by recording the phase shift induced on the probe pulse, via a nonlinear interaction in a second-order nonlinear crystal. A primary goal of my PhD project will be to test an experimental approach inTHz EOS that uses twin-beams[3].These are quantum states of light characterised by two beams with a perfect correlation in their photon number. They are one of the possible realisations of squeezed light and will be tested as a tool to overcome the sensitivity limit of THz EOS. To generate and detect twin-beams, I will expand on the work that I have implemented during my final year MEng project. I will use a periodically poled Lithium Niobate crystal provided by Covesion Ltd. designed to work in a type-II phase matched condition. The improvement in sensitivity acquired with the twin-beam configuration, shall be quantified thanks to the sub-shot-noise balanced detector that I designed and started to characterise during my MEng final year project. A method to classically enhance the sensitivity of phase measurements, comprises of using a laser cavity. Intracavity phase interferometry (IPI) is a cavity enhanced version of standard interferometry that provides direct access to the phase shift occurring on one comb of a cavity by beating it with a second, unperturbed comb. Specifically, the phase measurement is performed by recording the beat note obtained by interfering the cavity combs. This technique has never been used to measure THz radiation, and a further goal of my PhD project will be to develop an IPI-based THz detection scheme. To achieve this goal, I will follow be supervised by Dr Clerici and the UNO group, and I will follow
抽象。我与Clerici博士讨论的项目的目标是使用量子光学来提高电磁辐射时间分辨测量的灵敏度。具体而言,它旨在开发量子增强的计量工具,以检测弱太赫兹频率(THz)波形。电磁频谱的THz区域对于光谱学(例如危险气体和爆炸物),安全(通过包装材料成像)和制药(质量控制)中的应用具有重要的技术意义。然而,由于灵敏探测器的可用性有限,该光谱区域难以进入。在我的博士项目中,我将研究使用量子光学来改善THz时域光谱技术的技术水平[1]。背景电光采样(EOS)是一种常用的方法,其中短激光脉冲用于测量由二阶非线性晶体中的未知场(电光效应)引起的折射率变化[2]。该技术允许直接在时域中记录THz辐射,并通过获得傅立叶变换来提供辐射光谱。这种技术的灵敏度受到标准量子极限的限制,如果不使用非经典辐射,就不能进一步提高。当使用平均光子数N测量一个量时,在最好的情况下,即如果不存在其他噪声源,我们的测量将受到与灵敏度成比例的误差的影响。经典计量学受到这个极限的限制,称为标准量子极限。增加光子的数量,从而增加探测脉冲强度,提高了测量的灵敏度。在基于EOS的THz检测的情况下,探测强度只能增加到由非线性噪声的开始施加的限制。为了进一步提高灵敏度,可以利用量子关联态来降低误差比例,这是海森堡极限。在我的博士项目中,我的目标是利用光的压缩态实现海森堡极限太赫兹探测。方法论EOS是一种相位测量,其中通过记录探测脉冲上感应的相移,经由二阶非线性晶体中的非线性相互作用,在特定的时间坐标处测量电场。我的博士项目的主要目标将是测试使用双光束的THz EOS的实验方法[3]。这是光的量子态,其特征在于两个光束的光子数具有完美的相关性。它们是压缩光的可能实现之一,并将作为克服太赫兹EOS灵敏度极限的工具进行测试。为了产生和检测双光束,我将扩展我在最后一年工程硕士项目中实施的工作。我将使用Covesion有限公司提供的周期性极化铌酸锂晶体,该晶体设计用于II型相位匹配条件。双光束配置获得的灵敏度的提高,应量化感谢子散粒噪声平衡探测器,我设计,并开始在我的工程硕士最后一年的项目进行验证。一种传统上提高相位测量灵敏度的方法,包括使用激光腔。腔内相位干涉测量(IPI)是标准干涉测量的腔增强版本,其通过用第二个未受干扰的梳拍腔的一个梳来提供对发生在腔的一个梳上的相移的直接访问。具体地,通过记录通过干涉腔梳获得的拍音来执行相位测量。这种技术从未被用于测量太赫兹辐射,我的博士项目的进一步目标将是开发一种基于IPI的太赫兹探测方案。为了实现这一目标,我将在克莱里奇博士和联合国组织的监督下,

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
生命分子工学・海洋生命工学研究室
生物分子工程/海洋生物技术实验室
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    --
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship

相似国自然基金

双原子分子高激发振转能级的精确研究
  • 批准号:
    10774105
  • 批准年份:
    2007
  • 资助金额:
    35.0 万元
  • 项目类别:
    面上项目

相似海外基金

Exploring Nonclassical States for Quantum Metrology via Quantum Resource Theory
通过量子资源理论探索量子计量的非经典态
  • 批准号:
    2243591
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Metrology of multi-photon states for quantum technology
量子技术的多光子态计量
  • 批准号:
    2734681
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Studentship
Exploring Nonclassical States for Quantum Metrology via Quantum Resource Theory
通过量子资源理论探索量子计量的非经典态
  • 批准号:
    2210460
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
AWD13299 Admin Supplement to Support Undergraduate Summer Research Experiences
AWD13299 支持本科生暑期研究经历的管理补充
  • 批准号:
    10808664
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Fiber-Delivered Programmable Supercontinuum Laser Adaptive to EvolvingNeurophotonic Research
光纤传输的可编程超连续谱激光器适应不断发展的神经光子学研究
  • 批准号:
    9915977
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
Exploiting quantum phase transitions to improve the efficiency of quantum thermodynamic processes
利用量子相变提高量子热力学过程的效率
  • 批准号:
    18K13507
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Blood Flow Velocimetry Using Digital Subtraction Angiography
使用数字减影血管造影进行血流速度测量
  • 批准号:
    9763361
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
Developing entangled states with quantum-dot photons for use in quantum metrology
利用量子点光子开发纠缠态以用于量子计量
  • 批准号:
    454718-2014
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Postdoctoral Fellowships
Developing entangled states with quantum-dot photons for use in quantum metrology
利用量子点光子开发纠缠态以用于量子计量
  • 批准号:
    454718-2014
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Postdoctoral Fellowships
Whole Eye Optical Coherence Tomography to Improve Refractive Surgery and Eye Care
全眼光学相干断层扫描可改善屈光手术和眼部护理
  • 批准号:
    9189614
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了