Silica-protein Nanocomposites for Dental Repair
用于牙齿修复的二氧化硅-蛋白质纳米复合材料
基本信息
- 批准号:7373645
- 负责人:
- 金额:$ 33.63万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-04-01 至 2012-03-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAmino AcidsAnimalsBiocompatibleBiocompatible MaterialsBiologicalBiological AssayBiomedical EngineeringBiomimeticsBone RegenerationCellsChargeChemistryChimera organismChimeric ProteinsClinicalColorimetryCompatibleComplexConditionConsensusDataDentalDental MaterialsDental PulpDentinDentin FormationDiatomsEngineeringEnvironmentEscherichia coliEvaluationFacility Construction Funding CategoryFamilyFerretsFilmFutureGenetic EngineeringGlassGoalsHardnessHumanHydroxyapatitesIn SituIn VitroKineticsLaboratory ResearchLeadLengthLesionLinkMacrophage ActivationMapsMechanicsMineralsModelingMolecularMorphologyNatural SciencesNatural regenerationNatureNumbersObject AttachmentOsteoblastsOutcomePeptidesPhasePorosityPropertyProteinsRangeReactionResearch PersonnelRoentgen RaysRunningSchool DentistrySchoolsScienceScientistSeriesShapesSiliconSilicon DioxideSilkSolidSolutionsSpectroscopy, Fourier Transform InfraredSpidersStagingStandards of Weights and MeasuresStem cellsStructural ProteinStructureSurfaceSystemTechniquesTertiary Protein StructureTestingTimeTissuesTooth structureUnited States National Institutes of HealthUniversitiesVariantWashingtonWeekbasebeta pleated sheetbiomaterial compatibilitychemical kineticsclinical applicationdesignexpression cloningfibrous proteinimplantationin vitro Assayin vivointerfaciallight scatteringmineralizationmolecular scalenanocompositenanoindentationnanomechanicalnanometernanoscalenovelnovel strategiesoral biologyprofessorprogramsprotein structurerepairedresponserestorationsizesolid statetitanium dioxide
项目摘要
DESCRIPTION (provided by applicant): Inorganic materials such as bioactive glasses and composites are used in dental applications but suffer from a number of drawbacks including brittleness, mismatch in mechanical properties with surrounding tissues and poor interfacial stability. In the present proposal we describe a novel biomimetic nanocomposite approach to address these limitations. Importantly, we exploit two critical lessons in materials science and engineering from Nature, nanoscale protein structures and control of organic-inorganic interfaces, to optimize material features. We describe new biomaterial nanocomposites formed from bioengineered fusion proteins that consist of two components: (a) a protein self-assembling domain based on mimicking the consensus repeat in spider dragline silk - due to the formation of highly stable (beta-sheet) secondary structures with impressive mechanical properties, and (b) a silica-forming domain derived from the silicatin protein of a diatom that offers versatility in control of the reactions that generate silica and different morphologies. These fusion proteins provide a novel approach to nanoscale materials assembly and control, leading to well-organized composite material structures that can be formed either in vitro (prior to implantation) or in vivo (conformal fill ins, interfacial bonding, avoid shrinkage due to the composite features) in biocompatible approaches. The hypothesis for the proposed study is that nanocomposite material features (structure, morphology, mechanical) can be optimized and controlled (at different length scales) through appropriate design of chimeric (fusion) proteins in which the self-assembling structural domains and functional (silica forming) domains are linked at the molecular level. Our goal is to elucidate how alterations in the chemistry of the two domains will lead to predictable changes in composite material properties (structure, morphology, mechanics) (Aim #1), to optimize features for in situ materials formation based on biocompatible reaction conditions (Aim #2), and to assess the new materials for dentinogenic restoration in vitro and in vivo (Aim #3). Our preliminary data demonstrate the feasibility of the proposed approach and offers a new platform for in situ silica formation with unprecedented control of materials design and functional properties. The silica-forming domain can also be further modified to form other inorganic phases (e.g., hydroxyapatite, titanium dioxide), thus the versatility and opportunities that can be explored with this chimeric biomimetic protein design strategy are expansive.
描述(申请人提供):无机材料,如生物活性玻璃和复合材料用于牙科应用,但存在一些缺点,包括脆性、与周围组织的机械性能不匹配以及界面稳定性差。在本提案中,我们描述了一种新的仿生纳米复合材料方法来解决这些限制。重要的是,我们利用材料科学和工程中的两个关键经验教训,纳米级蛋白质结构和有机-无机界面的控制,以优化材料特性。我们描述了由生物工程融合蛋白形成的新的生物材料纳米复合材料,它由两部分组成:(A)基于模仿蜘蛛拖丝中的共识重复的蛋白质自组装域-由于形成了具有令人印象深刻的机械性能的高度稳定的(β-折叠)二级结构,以及(B)来自硅藻的硅素蛋白的二氧化硅形成域,它提供了多功能性,控制产生二氧化硅和不同形态的反应。这些融合蛋白为纳米材料的组装和控制提供了一种新的方法,导致了组织良好的复合材料结构,这些结构既可以在体外(植入前)形成,也可以在体内形成(共形填充、界面结合,避免因复合材料特性而导致的收缩)。这项研究的假设是,通过适当的嵌合(融合)蛋白质的设计,可以优化和控制纳米复合材料的特征(结构、形态、机械)(在不同的长度尺度上),其中自组装的结构域和功能(二氧化硅形成)域在分子水平上相连。我们的目标是阐明这两个领域的化学变化如何导致复合材料性能(结构、形态、力学)的可预测变化(目标1),基于生物相容性反应条件优化原位材料形成的特征(目标2),并评估用于体外和体内牙本质修复的新材料(目标3)。我们的初步数据证明了该方法的可行性,并为原位生成二氧化硅提供了一个新的平台,对材料设计和功能性质进行了前所未有的控制。二氧化硅形成结构域还可以进一步修饰以形成其他无机相(如羟基磷灰石、二氧化钛),因此这种嵌合仿生蛋白质设计策略可以探索的多功能性和机会是广阔的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
DAVID L. KAPLAN其他文献
DAVID L. KAPLAN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('DAVID L. KAPLAN', 18)}}的其他基金
2023 Silk Proteins and the Transition to Biotechnologies Gordon Research Conference
2023 年丝蛋白和向生物技术的过渡戈登研究会议
- 批准号:
10681751 - 财政年份:2023
- 资助金额:
$ 33.63万 - 项目类别:
Functional three dimensional brain-like tissues to study mechanisms of traumatic brain injury
功能性三维类脑组织用于研究创伤性脑损伤的机制
- 批准号:
8942566 - 财政年份:2015
- 资助金额:
$ 33.63万 - 项目类别:
Functional three dimensional brain-like tissues to study mechanisms of traumatic brain injury
功能性三维类脑组织用于研究创伤性脑损伤的机制
- 批准号:
9266832 - 财政年份:2015
- 资助金额:
$ 33.63万 - 项目类别:
Multifunctional Tropoelastin-Silk Biomaterial Systems
多功能原弹性蛋白-丝生物材料系统
- 批准号:
8518096 - 财政年份:2012
- 资助金额:
$ 33.63万 - 项目类别:
相似海外基金
Double Incorporation of Non-Canonical Amino Acids in an Animal and its Application for Precise and Independent Optical Control of Two Target Genes
动物体内非规范氨基酸的双重掺入及其在两个靶基因精确独立光学控制中的应用
- 批准号:
BB/Y006380/1 - 财政年份:2024
- 资助金额:
$ 33.63万 - 项目类别:
Research Grant
Quantifying L-amino acids in Ryugu to constrain the source of L-amino acids in life on Earth
量化 Ryugu 中的 L-氨基酸以限制地球生命中 L-氨基酸的来源
- 批准号:
24K17112 - 财政年份:2024
- 资助金额:
$ 33.63万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Molecular recognition and enantioselective reaction of amino acids
氨基酸的分子识别和对映选择性反应
- 批准号:
23K04668 - 财政年份:2023
- 资助金额:
$ 33.63万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Basic research toward therapeutic strategies for stress-induced chronic pain with non-natural amino acids
非天然氨基酸治疗应激性慢性疼痛策略的基础研究
- 批准号:
23K06918 - 财政年份:2023
- 资助金额:
$ 33.63万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Molecular mechanisms how arrestins that modulate localization of glucose transporters are phosphorylated in response to amino acids
调节葡萄糖转运蛋白定位的抑制蛋白如何响应氨基酸而被磷酸化的分子机制
- 批准号:
23K05758 - 财政年份:2023
- 资助金额:
$ 33.63万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Design and Synthesis of Fluorescent Amino Acids: Novel Tools for Biological Imaging
荧光氨基酸的设计与合成:生物成像的新工具
- 批准号:
2888395 - 财政年份:2023
- 资助金额:
$ 33.63万 - 项目类别:
Studentship
Collaborative Research: RUI: Elucidating Design Rules for non-NRPS Incorporation of Amino Acids on Polyketide Scaffolds
合作研究:RUI:阐明聚酮化合物支架上非 NRPS 氨基酸掺入的设计规则
- 批准号:
2300890 - 财政年份:2023
- 资助金额:
$ 33.63万 - 项目类别:
Continuing Grant
Structurally engineered N-acyl amino acids for the treatment of NASH
用于治疗 NASH 的结构工程 N-酰基氨基酸
- 批准号:
10761044 - 财政年份:2023
- 资助金额:
$ 33.63万 - 项目类别:
Lifestyle, branched-chain amino acids, and cardiovascular risk factors: a randomized trial
生活方式、支链氨基酸和心血管危险因素:一项随机试验
- 批准号:
10728925 - 财政年份:2023
- 资助金额:
$ 33.63万 - 项目类别:
Single-molecule protein sequencing by barcoding of N-terminal amino acids
通过 N 端氨基酸条形码进行单分子蛋白质测序
- 批准号:
10757309 - 财政年份:2023
- 资助金额:
$ 33.63万 - 项目类别: