Coordinating movements using optimal control: A neuro-computational perspective

使用最佳控制协调运动:神经计算视角

基本信息

  • 批准号:
    BB/E009174/1
  • 负责人:
  • 金额:
    $ 36.8万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2007
  • 资助国家:
    英国
  • 起止时间:
    2007 至 无数据
  • 项目状态:
    已结题

项目摘要

Much of the research on human motor control has examined how humans move a single body part, such as the arm or the eyes. Our everyday actions, however, consist of movements of multiple body parts at the same time. For example, we use both hands to tie our shoes. Even the simple act of raising one arm is accompanied by changes in leg muscles to stabilize stance. For many patients with neurological strokes or disorders, these complex movement skills often cause problems even after simple movements of isolated limbs have recovered. Compared to single limb movements, however, we know very little about how the nervous system achieves coordination between movements of different body parts. We have gained some insights into how the brain coordinates complex movements through experiments in which human volunteers are instructed to produce two different movements at the same time. These experiments have identified fundamental limitations in our ability to move two limbs independently. For example it is quite difficult to rub one's belly and to simultaneously pat one's head. Further experimentation however, has made clear that these limitations are generally not hard-wired into the motor system. Rather they depend crucially on what the goals of the movements are. For example, movements of the two hands can depend strongly upon one another when we manipulate a single object with two hands, and they can be controlled quite independently when we reach out for two separate objects. To understand how the brain coordinates movements in these different situations, we will study how human volunteers learn motor tasks in which the hands must be coordinated to achieve different goals. We will apply approaches from engineering and control theory to predict how, given a specific task goal, an organism should optimally coordinate movements, and will then test these predictions. We will also investigate how specifically the brain achieves optimal control in coordination. For example, what signals are exchanged between regions of the brain that control different movement components? Does coordination depend on 'muscle memory' / a memorized set of activation patterns in particular muscles? Or do different body parts 'talk' to each other by exchanging information about their current position and velocity? How do the ways in which these areas communicate change as coordination skills become more automatic through training? Functional magnetic resonance imaging (fMRI) will be used to measure brain activity in human volunteers while they perform coordination tasks. By changing the goals and requirements of the task, we will be able to identify neural areas that are involved in coordinating movements and specify their function. For example, when we grasp an object we have to coordinate the arm movement and the opening of the hand for grasping. Which neural areas are involved in estimating how far the arm has moved already towards the target, an important signal for deciding when to start the grasp? Which neural areas take these estimates and initiate the opening of the hand? Understanding how the brain coordinates movements and which areas of the brain are involved in this task is essential for understanding the coordination problems faced by patients affected by strokes or brain disorders. This work will provide a theoretical foundation that can lead to new treatments and rehabilitation programs designed to facilitate the ability of these individuals to produce complex motor skills, those that go beyond the control requirements for producing simple movements.
许多关于人类运动控制的研究都是研究人类如何移动身体的一个部位,比如手臂或眼睛。然而,我们的日常活动是由多个身体部位同时运动组成的。例如,我们用双手系鞋带。即使是举起一只手臂的简单动作,也伴随着腿部肌肉的变化,以稳定立场。对于许多患有神经性中风或疾病的患者来说,即使在孤立肢体的简单运动已经恢复之后,这些复杂的运动技能也常常会引起问题。然而,与单肢运动相比,我们对神经系统如何实现不同身体部位运动之间的协调知之甚少。我们已经通过实验对大脑如何协调复杂的动作有了一些了解,在这些实验中,人类志愿者被指示同时产生两个不同的动作。这些实验已经确定了我们独立移动两个肢体的能力的基本限制。例如,揉肚子的同时拍头是相当困难的。然而,进一步的实验已经清楚地表明,这些限制通常不会硬连线到电机系统中。相反,它们主要取决于运动的目标是什么。例如,当我们用两只手操纵一个物体时,两只手的运动可能强烈地依赖于彼此,而当我们伸手去拿两个单独的物体时,它们可以被完全独立地控制。为了了解大脑如何在这些不同的情况下协调运动,我们将研究人类志愿者如何学习运动任务,其中双手必须协调以实现不同的目标。我们将应用工程和控制理论的方法来预测,给定一个特定的任务目标,生物体应该如何最佳地协调运动,然后将测试这些预测。我们还将研究大脑如何具体实现协调的最佳控制。例如,控制不同运动成分的大脑区域之间交换了什么信号?协调是否依赖于“肌肉记忆”/特定肌肉的一组记忆激活模式?还是不同的身体部位通过交换当前位置和速度的信息来相互“交谈”?随着协调技能通过培训变得更加自动化,这些领域的沟通方式如何改变?功能性磁共振成像(fMRI)将用于测量人类志愿者在执行协调任务时的大脑活动。通过改变任务的目标和要求,我们将能够识别参与协调运动的神经区域,并指定它们的功能。例如,当我们抓住一个物体时,我们必须协调手臂的运动和手的张开。哪些神经区域参与估计手臂已经向目标移动了多远,这是决定何时开始抓握的重要信号?哪些神经区域接受这些估计并开始张开手?了解大脑如何协调运动,以及大脑的哪些区域参与了这项任务,对于理解中风或大脑疾病患者所面临的协调问题至关重要。这项工作将提供一个理论基础,可以导致新的治疗和康复计划,旨在促进这些人产生复杂的运动技能的能力,那些超越了产生简单运动的控制要求。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Dissociating timing and coordination as functions of the cerebellum.
Use-Dependent and Error-Based Learning of Motor Behaviors
  • DOI:
    10.1523/jneurosci.5406-09.2010
  • 发表时间:
    2010-04-14
  • 期刊:
  • 影响因子:
    5.3
  • 作者:
    Diedrichsen, Joern;White, Olivier;Lally, Niall
  • 通讯作者:
    Lally, Niall
Optimal task-dependent changes of bimanual feedback control and adaptation.
  • DOI:
    10.1016/j.cub.2007.08.051
  • 发表时间:
    2007-10-09
  • 期刊:
  • 影响因子:
    9.2
  • 作者:
    Diedrichsen, Jorn
  • 通讯作者:
    Diedrichsen, Jorn
Bimanual coordination as task-dependent linear control policies
  • DOI:
    10.1016/j.humov.2008.10.003
  • 发表时间:
    2009-06-01
  • 期刊:
  • 影响因子:
    2.1
  • 作者:
    Diedrichsen, Joern;Dowling, Noreen
  • 通讯作者:
    Dowling, Noreen
Dissociating variability and effort as determinants of coordination.
  • DOI:
    10.1371/journal.pcbi.1000345
  • 发表时间:
    2009-04
  • 期刊:
  • 影响因子:
    4.3
  • 作者:
    O'Sullivan I;Burdet E;Diedrichsen J
  • 通讯作者:
    Diedrichsen J
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jörn Diedrichsen其他文献

A spiking neural model of adaptive arm control - Supplemen-tary material
自适应手臂控制的尖峰神经模型 - 补充材料
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    J. Galea;Elizabeth Mallia;John C. Rothwell;Jörn Diedrichsen
  • 通讯作者:
    Jörn Diedrichsen
A hierarchical atlas of the human cerebellum for functional precision mapping
用于功能精细映射的人类小脑分层图谱
  • DOI:
    10.1038/s41467-024-52371-w
  • 发表时间:
    2024-09-27
  • 期刊:
  • 影响因子:
    15.700
  • 作者:
    Caroline Nettekoven;Da Zhi;Ladan Shahshahani;Ana Luísa Pinho;Noam Saadon-Grosman;Randy Lee Buckner;Jörn Diedrichsen
  • 通讯作者:
    Jörn Diedrichsen
Diversity of the nature of input and output signals in the cerebellum suggests a diversity of function
小脑输入和输出信号性质的多样性表明其功能具有多样性。
  • DOI:
    10.1016/j.cobeha.2024.101386
  • 发表时间:
    2024-06-01
  • 期刊:
  • 影响因子:
    3.500
  • 作者:
    Jean-Jacque Orban de Xivry;Jörn Diedrichsen
  • 通讯作者:
    Jörn Diedrichsen
Population-wide cerebellar growth models of children and adolescents
儿童和青少年的全人群小脑生长模型
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
    C. Gaiser;Rick van der Vliet;A. D. de Boer;O. Donchin;P. Berthet;Gabriel A. Devenyi;M. Mallar Chakravarty;Jörn Diedrichsen;A. Marquand;M. A. Frens;R. Muetzel
  • 通讯作者:
    R. Muetzel
University of Birmingham The dissociable effects of punishment and reward on motor learning
伯明翰大学 惩罚和奖励对运动学习的分离效应
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    J. Galea;Elizabeth Mallia;John C. Rothwell;Jörn Diedrichsen
  • 通讯作者:
    Jörn Diedrichsen

Jörn Diedrichsen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jörn Diedrichsen', 18)}}的其他基金

Integrating perception and action: the multi-channel model of visuo-motor control
整合感知与行动:视觉运动控制的多通道模型
  • 批准号:
    BB/J009458/1
  • 财政年份:
    2012
  • 资助金额:
    $ 36.8万
  • 项目类别:
    Research Grant
Coordinating movements using optimal control: A neuro-computational perspective
使用最佳控制协调运动:神经计算视角
  • 批准号:
    BB/E009174/2
  • 财政年份:
    2010
  • 资助金额:
    $ 36.8万
  • 项目类别:
    Research Grant

相似海外基金

A Mobile Health Application to Detect Absence Seizures using Hyperventilation and Eye-Movement Recordings
一款使用过度换气和眼动记录检测失神癫痫发作的移动健康应用程序
  • 批准号:
    10696649
  • 财政年份:
    2023
  • 资助金额:
    $ 36.8万
  • 项目类别:
Promoting Functional Neck Motion in Patients with Cerebral Palsy using a Robotic Neck Brace
使用机器人颈托促进脑瘫患者的颈部功能性运动
  • 批准号:
    10742373
  • 财政年份:
    2023
  • 资助金额:
    $ 36.8万
  • 项目类别:
Construction of a motor imagery EEG classification system for finger movements using phase
使用相位构建手指运动运动想象脑电图分类系统
  • 批准号:
    23K11178
  • 财政年份:
    2023
  • 资助金额:
    $ 36.8万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Using vortical airflow to pressurize the upper airway without a tight seal during CPAP therapy
在 CPAP 治疗期间使用涡流气流对上呼吸道加压,无需紧密密封
  • 批准号:
    10594761
  • 财政年份:
    2023
  • 资助金额:
    $ 36.8万
  • 项目类别:
Point-of-care prognostic modeling of PTSD risk after traumatic event exposure using digital biomarkers and clinical data from electronic health records in the emergency department setting (PREDICT)
使用数字生物标志物和急诊科电子健康记录中的临床数据对创伤事件暴露后的 PTSD 风险进行护理点预后建模 (PREDICT)
  • 批准号:
    10884738
  • 财政年份:
    2023
  • 资助金额:
    $ 36.8万
  • 项目类别:
Generating a Skeleton Structure of a Humanoid Robot that Reproduces Human Movements Using Multi-stage CNN
使用多级 CNN 生成重现人类动作的人形机器人的骨骼结构
  • 批准号:
    23K16972
  • 财政年份:
    2023
  • 资助金额:
    $ 36.8万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Towards intra-operative guidance in brain tumor surgery using real-time resting-state functional MRI
使用实时静息态功能 MRI 进行脑肿瘤手术的术中指导
  • 批准号:
    10761498
  • 财政年份:
    2023
  • 资助金额:
    $ 36.8万
  • 项目类别:
Characteristics of using real and mirror image visual feedback in whole-body movements
全身运动中使用真实和镜像视觉反馈的特点
  • 批准号:
    23K10748
  • 财政年份:
    2023
  • 资助金额:
    $ 36.8万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Investigating Novel Transcriptional Mechanisms for Visual Neural Circuit Development and Function using Zebrafish
使用斑马鱼研究视觉神经回路发育和功能的新型转录机制
  • 批准号:
    10593144
  • 财政年份:
    2022
  • 资助金额:
    $ 36.8万
  • 项目类别:
Using Population Vectors to Understand Visual Working Memory for Natural Stimuli
使用群体向量来理解自然刺激的视觉工作记忆
  • 批准号:
    10339227
  • 财政年份:
    2022
  • 资助金额:
    $ 36.8万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了