A Novel In-Vivo Cell Tracking System Based on Combined XCT and FT

基于 XCT 和 FT 组合的新型体内细胞追踪系统

基本信息

  • 批准号:
    7456659
  • 负责人:
  • 金额:
    $ 42.29万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2007
  • 资助国家:
    美国
  • 起止时间:
    2007-07-01 至 2010-03-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): We propose to build the world's first combined x-ray computed tomography (XCT) and fluorescence tomography (FT) system. The construction of this system will create a new molecular imaging tool for researchers performing stem cell and cancer research. Stem cell research holds great promise for the development of cellular therapies for the treatment of disease and the development of cell tracking methods is therefore extremely significant. Several important scientific and technological innovations developed by our team of investigators at DxRay Inc. (Northridge, CA) and the University of California Irvine (UCI) allow the creation of a novel combined XCT and FT system. This project produces a unique dual-modality imaging methodology that combines functional and anatomical information and provides a new approach to molecular imaging. At the completion of the proposed project the combined XCT and FT system will add unique imaging capabilities to the animal imaging facilities at UCI. Furthermore, the innovative XCT technology developed by DxRay and the novel FT technology developed by UCI will be commercialized with support from Gamma Medica Ideas (Northridge, CA) who are very interested in this development and are providing a gantry for the combined system. Cellular therapeutics show great promise for the treatment of many diseases, but unfortunately few non-invasive techniques exist for tracking the cells after administration. The ability to non-invasively monitor cell trafficking in-vivo longitudinally is a pressing need for emerging cellular therapeutic strategies since this could be used to assess response. In-vivo tracking of cells has a broad range of potential applications in various diseases covering the fields of neurology, oncology, and cardiology. Therefore, to address the need for new multi-modality molecular imaging technologies, that are capable of the non-invasive in-vivo longitudinal imaging of mice for cell tracking, we propose to build the first of its kind combined XCT and FT system. The development of this very promising new technology, the first to combine FT with anatomical information from XCT in a relatively inexpensive and easy to use system, will create a powerful new tool for stem cell research and targeted drug delivery studies. We are developing novel in-vivo combined x-ray computed tomography (XCT) and fluorescence tomography (FT) system. This new technology will create a new type of dual-modality molecular imaging. This project will create new cell tracking capabilities and will benefit preclinical studies of cellular therapies.
描述(申请人提供):我们计划建立世界上第一个结合X射线计算机断层扫描(XCT)和荧光断层扫描(FT)的系统。该系统的构建将为研究人员进行干细胞和癌症研究创造一种新的分子成像工具。干细胞研究为开发治疗疾病的细胞疗法带来了巨大的希望,因此细胞跟踪方法的开发具有极其重要的意义。我们在DxRay Inc.(加利福尼亚州北岭)和加州大学欧文分校(UCI)的研究团队开发了几项重要的科技创新,从而创建了一种新颖的XCT和FT组合系统。该项目产生了一种独特的双模式成像方法,结合了功能和解剖信息,并提供了一种新的分子成像方法。在拟议的项目完成后,XCT和FT系统的组合将为UCI的动物成像设施增加独特的成像能力。此外,DxRay开发的创新XCT技术和UCI开发的新型FT技术将在Gamma Medica Ideas(加利福尼亚州北岭)的支持下商业化,Gamma Medica Ideas对这一开发非常感兴趣,并正在为组合系统提供机架。细胞疗法在许多疾病的治疗中显示出巨大的前景,但不幸的是,几乎没有非侵入性技术可以在给药后追踪细胞。非侵入性地监测体内细胞纵向转运的能力是新兴细胞治疗策略的迫切需要,因为这可以用于评估反应。体内细胞跟踪在神经学、肿瘤学和心脏病学领域的各种疾病中具有广泛的潜在应用。因此,为了满足对新的多模式分子成像技术的需求,能够无创地对小鼠体内进行纵向成像以进行细胞跟踪,我们建议建立第一个结合XCT和FT的系统。这项非常有前景的新技术的开发,首次将FT与XCT的解剖信息结合在一个相对便宜且易于使用的系统中,将为干细胞研究和靶向药物释放研究创造一个强大的新工具。我们正在开发新的体内联合X射线计算机断层扫描(XCT)和荧光断层扫描(FT)系统。这项新技术将创造一种新型的双模式分子成像。该项目将创造新的细胞跟踪能力,并将有利于细胞疗法的临床前研究。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

WILLIAM C BARBER其他文献

WILLIAM C BARBER的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('WILLIAM C BARBER', 18)}}的其他基金

Low Dose Rapid Scanning Slit Digital Mammography and Breast Tomosynthesis
低剂量快速扫描狭缝数字化乳腺X线摄影和乳腺断层合成
  • 批准号:
    9738244
  • 财政年份:
    2014
  • 资助金额:
    $ 42.29万
  • 项目类别:
Low Dose Rapid Scanning Slit Digital Mammography and Breast Tomosynthesis
低剂量快速扫描狭缝数字化乳腺X线摄影和乳腺断层合成
  • 批准号:
    9098644
  • 财政年份:
    2014
  • 资助金额:
    $ 42.29万
  • 项目类别:
Low Dose Rapid Scanning Slit Digital Mammography and Breast Tomosynthesis
低剂量快速扫描狭缝数字化乳腺X线摄影和乳腺断层合成
  • 批准号:
    8644679
  • 财政年份:
    2014
  • 资助金额:
    $ 42.29万
  • 项目类别:
Photon Counting Detectors for Clinical k-edge CT
用于临床 k 边缘 CT 的光子计数探测器
  • 批准号:
    8298152
  • 财政年份:
    2011
  • 资助金额:
    $ 42.29万
  • 项目类别:
Simultaneous SPECT/CT with a single photon counting camera
使用单光子计数相机同时进行 SPECT/CT
  • 批准号:
    8200367
  • 财政年份:
    2011
  • 资助金额:
    $ 42.29万
  • 项目类别:
Photon Counting Detectors for Clinical k-edge CT
用于临床 k 边缘 CT 的光子计数探测器
  • 批准号:
    8180319
  • 财政年份:
    2011
  • 资助金额:
    $ 42.29万
  • 项目类别:
Photon Counting Detectors for Clinical k-edge CT
用于临床 k 边缘 CT 的光子计数探测器
  • 批准号:
    8001936
  • 财政年份:
    2010
  • 资助金额:
    $ 42.29万
  • 项目类别:
Novel Photon Counting Clinical CT Detectors
新型光子计数临床 CT 探测器
  • 批准号:
    7482068
  • 财政年份:
    2008
  • 资助金额:
    $ 42.29万
  • 项目类别:
Novel Photon Counting Clinical CT Detectors
新型光子计数临床 CT 探测器
  • 批准号:
    7672022
  • 财政年份:
    2008
  • 资助金额:
    $ 42.29万
  • 项目类别:
A Novel In-Vivo Cell Tracking System Based on Combined XCT and FT
基于 XCT 和 FT 组合的新型体内细胞追踪系统
  • 批准号:
    7327532
  • 财政年份:
    2007
  • 资助金额:
    $ 42.29万
  • 项目类别:

相似海外基金

CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 42.29万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 42.29万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 42.29万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 42.29万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 42.29万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 42.29万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 42.29万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 42.29万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 42.29万
  • 项目类别:
    Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 42.29万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了