Dynamics on homogeneous spaces with applications to number theory.
齐次空间动力学及其在数论中的应用。
基本信息
- 批准号:EP/E045308/2
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Fellowship
- 财政年份:2008
- 资助国家:英国
- 起止时间:2008 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Metric Diophantine approximation seeks to characterize the real numbers, or more generally points in a finite dimensional vector space over a local field, by their approximations properties. Specifically, one seeks to determine which properties are exceptional, in that they hold for a sparse set. In addition to its intrinsic beauty, Diophantine approximation has a wide variety of applications. For instance, numbers which possess certain ``exceptional Diophantine properties play an important role in various engineering and physical problems, for instance in KAM theory and celestial mechanics. Indeed, the study of Diophantine approximation can be traced back to the ancient Greeks who studied it precisely for its applicability. It turns out that showing that points on a surface satisfy these exceptional laws is much more difficult and has been one of the central themes in this area of research. In other words, one wants to show that a surface, or its higher dimensional analogue has the property that the set of points which have good approximation properties is sparse. This study of such problems is referred to as Diophantine approximation on manifolds and is one of Ghosh's key research areas. Ghosh uses an approach inspired by Kleinbock and Margulis which uses powerful tools from the theory of dynamical systems, in particular certain unipotent flows which are extremely well behaved. On the other hand, Ghosh and his co-author M.Einsiedler have also made basic contributions to the theory of unipotent flows. The proposed research has two core objectives. To make contributions to the study of metric Diophantine approximation on manifolds, particularly to the problem of inheritance of Diophantine properties by submanifolds of Euclidean space. It is expected that a part of this project will be undertaken in collaboration with S.Velani (York). S.Velani is a leading expert on Diophantine approximation. Moreover, Ghosh and Velani have different approaches to similar problems and one hopes that combining methods will provide a fresh perspective on difficlt problems.The second objective is to make contributions to the study of homogeneous dynamics over certain structures called local fields-particularly those with positive characteristic. This part of the project will be undertaken in collaboration with M.Einsiedler (Ohio State). This corresponds to the dynamical part of Ghosh's research and the aim of this project will be to gain a better, hopefully complete understanding of these systems which are conjectured to be extremely well behaved systems even though they appear very complicated. This is also related to the first objective because it is highly likely that toold developed in this part of the project will be applicable to number theoretic problems.
度量丢番图逼近试图通过局部域上的有限维向量空间中的点的逼近性质来表征真实的数。具体来说,人们试图确定哪些属性是例外的,因为它们适用于稀疏集。丢番图近似除了其内在的美之外,还有着广泛的应用。例如,具有某些特殊丢番图性质的数在各种工程和物理问题中发挥着重要作用,例如在KAM理论和天体力学中。的确,丢番图近似的研究可以追溯到古希腊人,他们正是为了它的适用性而研究它。事实证明,证明曲面上的点满足这些例外定律要困难得多,并且一直是这一研究领域的中心主题之一。换句话说,人们想要证明一个曲面或其高维类似物具有这样的性质,即具有良好近似性质的点集是稀疏的。这类问题的研究被称为流形上的丢番图逼近,是高希的重点研究领域之一。Ghosh使用了一种受Kleinbock和Margulis启发的方法,该方法使用了动力系统理论中的强大工具,特别是某些表现非常好的单幂流。另一方面,Ghosh和他的合著者M.Einsiedler也对幂幺流理论做出了基本贡献。这项研究有两个核心目标。为流形上度量丢番图逼近的研究,特别是欧氏空间子流形的丢番图性质的继承问题做出贡献。预计该项目的一部分将与S.Velani(约克)合作进行。S.Velani是丢番图近似的主要专家。此外,Ghosh和Velani对类似问题有不同的方法,人们希望结合方法将为困难问题提供一个新的视角。第二个目标是为研究被称为局部场的结构上的齐次动力学做出贡献,特别是那些具有正特征的结构。项目的这一部分将与M.Einsiedler(俄亥俄州)合作进行。这对应于Ghosh研究的动力学部分,该项目的目的是更好地,希望完整地了解这些系统,这些系统被证明是非常良好的系统,即使它们看起来非常复杂。这也与第一个目标有关,因为在项目的这一部分中开发的工具很可能适用于数论问题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Anish Ghosh其他文献
The Market Cost of Business Cycle Fluctuations
经济周期波动的市场成本
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Anish Ghosh;C. Julliard;M. Stutzer - 通讯作者:
M. Stutzer
A generic effective Oppenheim theorem for systems of forms
形式系统的通用有效奥本海姆定理
- DOI:
10.1016/j.jnt.2020.07.002 - 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Prasuna Bandi;Anish Ghosh;Jiyoung Han - 通讯作者:
Jiyoung Han
Surplus Consumption Ratio Estimated Using Market Prices Vs Consumption Data
使用市场价格与消费数据估算的剩余消费率
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Alexander P. Kontoghiorghes;Marcelo Fernandes;Anish Ghosh;W. Goetzmann;Elise Gourier - 通讯作者:
Elise Gourier
Bounded orbits of diagonalizable flows on finite volume quotients of products of SL2(R)
SL2(R) 乘积的有限体积商上可对角化流的有界轨道
- DOI:
10.1016/j.aim.2019.106743 - 发表时间:
2019 - 期刊:
- 影响因子:1.7
- 作者:
Jinpeng An;Anish Ghosh;Lifan Guan;Tue Ly - 通讯作者:
Tue Ly
Counting intrinsic Diophantine approximations in simple algebraic groups
计算简单代数群中的内在丢番图近似
- DOI:
10.1007/s11856-022-2428-x - 发表时间:
2021 - 期刊:
- 影响因子:1
- 作者:
Anish Ghosh;A. Gorodnik;A. Nevo - 通讯作者:
A. Nevo
Anish Ghosh的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Anish Ghosh', 18)}}的其他基金
Dynamics on homogeneous spaces with applications to number theory.
齐次空间动力学及其在数论中的应用。
- 批准号:
EP/E045308/1 - 财政年份:2008
- 资助金额:
-- - 项目类别:
Fellowship
相似国自然基金
均相液相生物芯片检测系统的构建及其在癌症早期诊断上的应用
- 批准号:82372089
- 批准年份:2023
- 资助金额:48.00 万元
- 项目类别:面上项目
伽罗华环上重根常循环码的一些问题研究
- 批准号:11626077
- 批准年份:2016
- 资助金额:3.0 万元
- 项目类别:数学天元基金项目
代数的 Leading homogeneous (monomial) 代数及其应用研究
- 批准号:10971044
- 批准年份:2009
- 资助金额:26.0 万元
- 项目类别:面上项目
相似海外基金
Operations on equivariant oriented cohomology of homogeneous spaces
齐次空间的等变导向上同调的运算
- 批准号:
RGPIN-2022-03060 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Homogeneous spaces and dimension theory
齐次空间和维度理论
- 批准号:
RGPIN-2015-06200 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Asymptotic and Uniform Diophantine Approximation Via Flows on Homogeneous Spaces
通过齐次空间上的流进行渐近一致丢番图逼近
- 批准号:
2155111 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
Oriented cohomology and invariants of homogeneous spaces
齐次空间的有向上同调和不变量
- 批准号:
RGPIN-2015-04469 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Noncommutative Geometry and Analysis on Homogeneous Spaces
非交换几何与齐次空间分析
- 批准号:
2054725 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Standard Grant
Homogeneous spaces and dimension theory
齐次空间和维度理论
- 批准号:
RGPIN-2015-06200 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Complex geometric structures and their moduli on Lie groups and homogeneous spaces
李群和齐次空间上的复杂几何结构及其模
- 批准号:
21K03248 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
harmonic analysis on homogeneous spaces and the method of coadjoint orbit
齐次空间的调和分析与共交轨道方法
- 批准号:
20K14325 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
Oriented cohomology and invariants of homogeneous spaces
齐次空间的有向上同调和不变量
- 批准号:
RGPIN-2015-04469 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Surface group representations and geometry of negative curvature
负曲率的曲面组表示和几何
- 批准号:
20K03610 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)