Multiple Time Scales of Human Sequence Learning
人类序列学习的多个时间尺度
基本信息
- 批准号:8133082
- 负责人:
- 金额:$ 25.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2003
- 资助国家:美国
- 起止时间:2003-06-15 至
- 项目状态:未结题
- 来源:
- 关键词:AgingAreaBasal GangliaBehaviorBehavioralBehavioral ModelBrainBrain InjuriesDecision TheoryFaceFunctional ImagingFunctional Magnetic Resonance ImagingGoalsHealthHourHumanInstructionLearningLifeMapsMeasuresMetabolic ActivationModelingMonkeysMotorMotor CortexMotor SkillsMovementNerve DegenerationPhysiologicalPrincipal InvestigatorSpecificityStrokeSystemTask PerformancesTechniquesTestingTimeTrainingTranscranial magnetic stimulationWorkarmbasehuman dataimaging modalitylong term memoryneural circuitnovelprogramsrelating to nervous systemsequence learningskillsskills trainingtherapy design
项目摘要
Project 2 Multiple Time Scales of Human Sequence Learning
A hallmark of human behavior is the capacity to acquire and maintain motor skills throughout life, both in health
and in the face of brain injury or degeneration. This project will focus on mapping changes in motor systems of
the human brain as healthy subjects practice and solidify skills into long-term memory. The primary goal of this
work is to determine if there exist multiple time scales of learning and if these are based on behavioral features
supported by distinct underlying neural circuits. The work is motivated by the need for a comprehensive model
that explains when different motor circuits are engaged as a function of time over the course of training,
particularly for skills requiring extensive practice. This question is important clinically because current therapies
for neurodegeneration or stroke, including forced use paradigms, demand extensive training whereas most learning
models consider changes over minutes to hours. The current work will identify longitudinal and cross sectional
changes in the brain over extended training periods during sequence learning. Functional magnetic resonance
imaging (fMRI) will be used as a physiologic probe of neural circuit recruitment and to model interactions between
cortical and subcortical networks that may drive cortical plasticity. To generate causal inferences, disruptive
transcranial magnetic stimulation (TMS) will be used to selectively inactivate different areas that contribute to
task performance.
Specific Aim 1. Distinguish neural systems associated with multiple time scales of learning. The conceptual
framework underlying this aim is that dissociable cortical-subcortical networks are engaged over the course of skill
training, with these networks demonstrating distinct time scales of recruitment.
Specific Aim 2. Use functional imaging to predict long-term skill retention. This will be tested by comparing brain
activity in different subjects at the end of training and for sequences trained at different intensities.
Specific Aim 3. Determine the time course and substrates associated with sequence generalization. It is
hypothesized that generalization of a skill to the other arm is supported is acquired early and on short time scales.
In contrast, effector specificity emerges with long-term practice and is associated with changes in neural systems
occurring on a long time scale. This has implications for defining when intermanual transfer is effective.
RELEVANCE (See instructions):
The proposed work is central to the problem of understanding the mechansims where practice leads to to
reorganization of the human motor system in the face of aging, neurodeneration, stroke or brain injury.
Understanding these mechansims has an impact on the design of therapies directed at preserving function,
developing compensator movements and ultimately, developing novel motor capacity.
项目2人类序列学习的多时间尺度
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SCOTT Thomas GRAFTON其他文献
SCOTT Thomas GRAFTON的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SCOTT Thomas GRAFTON', 18)}}的其他基金
Role of fronto-parietal cortices in the prediction of self-generated and observed
额顶叶皮层在预测自身生成和观察到的信息中的作用
- 批准号:
7558214 - 财政年份:2009
- 资助金额:
$ 25.99万 - 项目类别:
Role of fronto-parietal cortices in the prediction of self-generated and observed
额顶叶皮层在预测自身生成和观察到的信息中的作用
- 批准号:
7763232 - 财政年份:2009
- 资助金额:
$ 25.99万 - 项目类别:
Role of fronto-parietal cortices in the prediction of self-generated and observed
额顶叶皮层在预测自身生成和观察到的信息中的作用
- 批准号:
8011950 - 财政年份:2009
- 资助金额:
$ 25.99万 - 项目类别:
Spatial and Temporal Scales of Motor Sequence Learning
运动序列学习的空间和时间尺度
- 批准号:
7695095 - 财政年份:2003
- 资助金额:
$ 25.99万 - 项目类别:
Spatial and Temporal Scales of Motor Sequence Learning
运动序列学习的空间和时间尺度
- 批准号:
8133087 - 财政年份:2003
- 资助金额:
$ 25.99万 - 项目类别:
Spatial and Temporal Scales of Motor Sequence Learning
运动序列学习的空间和时间尺度
- 批准号:
7942816 - 财政年份:2003
- 资助金额:
$ 25.99万 - 项目类别:
Spatial and Temporal Scales of Motor Sequence Learning
运动序列学习的空间和时间尺度
- 批准号:
8529621 - 财政年份:2003
- 资助金额:
$ 25.99万 - 项目类别:
相似国自然基金
层出镰刀菌氮代谢调控因子AreA 介导伏马菌素 FB1 生物合成的作用机理
- 批准号:2021JJ40433
- 批准年份:2021
- 资助金额:0.0 万元
- 项目类别:省市级项目
寄主诱导梢腐病菌AreA和CYP51基因沉默增强甘蔗抗病性机制解析
- 批准号:32001603
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
AREA国际经济模型的移植.改进和应用
- 批准号:18870435
- 批准年份:1988
- 资助金额:2.0 万元
- 项目类别:面上项目
相似海外基金
Onboarding Rural Area Mathematics and Physical Science Scholars
农村地区数学和物理科学学者的入职
- 批准号:
2322614 - 财政年份:2024
- 资助金额:
$ 25.99万 - 项目类别:
Standard Grant
TRACK-UK: Synthesized Census and Small Area Statistics for Transport and Energy
TRACK-UK:交通和能源综合人口普查和小区域统计
- 批准号:
ES/Z50290X/1 - 财政年份:2024
- 资助金额:
$ 25.99万 - 项目类别:
Research Grant
Wide-area low-cost sustainable ocean temperature and velocity structure extraction using distributed fibre optic sensing within legacy seafloor cables
使用传统海底电缆中的分布式光纤传感进行广域低成本可持续海洋温度和速度结构提取
- 批准号:
NE/Y003365/1 - 财政年份:2024
- 资助金额:
$ 25.99万 - 项目类别:
Research Grant
Point-scanning confocal with area detector
点扫描共焦与区域检测器
- 批准号:
534092360 - 财政年份:2024
- 资助金额:
$ 25.99万 - 项目类别:
Major Research Instrumentation
Collaborative Research: Scalable Manufacturing of Large-Area Thin Films of Metal-Organic Frameworks for Separations Applications
合作研究:用于分离应用的大面积金属有机框架薄膜的可扩展制造
- 批准号:
2326714 - 财政年份:2024
- 资助金额:
$ 25.99万 - 项目类别:
Standard Grant
Collaborative Research: Scalable Manufacturing of Large-Area Thin Films of Metal-Organic Frameworks for Separations Applications
合作研究:用于分离应用的大面积金属有机框架薄膜的可扩展制造
- 批准号:
2326713 - 财政年份:2024
- 资助金额:
$ 25.99万 - 项目类别:
Standard Grant
Unlicensed Low-Power Wide Area Networks for Location-based Services
用于基于位置的服务的免许可低功耗广域网
- 批准号:
24K20765 - 财政年份:2024
- 资助金额:
$ 25.99万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
- 批准号:
2427233 - 财政年份:2024
- 资助金额:
$ 25.99万 - 项目类别:
Standard Grant
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
- 批准号:
2427232 - 财政年份:2024
- 资助金额:
$ 25.99万 - 项目类别:
Standard Grant
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
- 批准号:
2427231 - 财政年份:2024
- 资助金额:
$ 25.99万 - 项目类别:
Standard Grant














{{item.name}}会员




