Localized and distributed real-time fMRI approaches to facilitate self control in

本地化和分布式实时功能磁共振成像方法,以促进自我控制

基本信息

  • 批准号:
    8270052
  • 负责人:
  • 金额:
    $ 41.39万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-09-15 至 2013-06-30
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Recent developments in real-time functional magnetic resonance imaging (rt-fMRI) enable novel behavioral therapies for addiction and the simultaneous imaging of the brain's response to treatment. With rt-fMRI, the therapeutic process can become multi-modal and adaptive, wherein a cognitive behavioral intervention itself can co-evolve with a responding brain. In a manner that has never before been possible, self-control can be guided by signals from one's own neural activity. Toward this end, the broad goals of our application are threefold. First, we will expand, evaluate, and refine the capabilities of our existing rt-fMRI system (LaConte et al., 2007 - Appendix A). Second, given the profound differential roles of cue-induced craving and cognitive control on the initiation, maintenance, and cessation of substance abuse, we apply rt-fMRI to decrease neural activations associated with craving and increase neural activations associated with cognitive control. Third, we will assess the feasibility and effectiveness of implementing rt-fMRI neurofeedback to aid in maintaining abstinence in treatment-seeking substance users. Thus, the overarching goal of our application is to use neurobehavioral states associated with craving and cognitive control to develop an optimal neurofeedback signal that can be efficiently modulated by substance abusers to facilitate self-control. We expect that achieving the aims of this application will lead to technical and therapeutic innovations to be further pursued in subsequent full-scale studies. The Specific Aims for the R21 phase (years 1 and 2) will provide an assessment of the relative advantages of localized and distributed rt-fMRI methods and quantitative results on how well individuals can modulate fMRI-computer interfaces using cognitive control and craving alleviation strategies. Thus we aim to: 1. Expand and refine the capabilities of our existing real-time fMRI feedback system. 2. Modulate neural signals of cue-induced craving and cognitive control in the real-time environment. The Specific Aims for the R33 phase (years 3, 4, 5) will provide critical experimental controls to the R21 findings and will explore methods to combine distributed and localized approaches to rt-fMRI. We will also assess the feasibility of using fMRI-based neurofeedback to facilitate smoking cessation in treatment-seeking smokers, obtaining hypothesis-generating data for future large-scale studies. Thus we aim to: 3. Improve neurofeedback signals and validate these signals using control tasks. 4. Pilot the feasibility and effectiveness of implementing neurofeedback in treatment-seeking smokers. PUBLIC HEALTH RELEVANCE: This project will expand the capabilities of Magnetic Resonance Imaging to develop and improve methods for real-time feedback. The goal of this project is to use neurobehavioral states associated with craving and cognitive control to develop an optimal neurofeedback signal that can be efficiently modulated by substance abusers to facilitate self-control.
描述(申请人提供):实时功能磁共振成像(RT-fMRI)的最新发展使成瘾的新行为疗法成为可能,并同时成像大脑对治疗的反应。有了RT-fMRI,治疗过程可以变得多模式和适应性,其中认知行为干预本身可以与反应的大脑共同进化。以一种前所未有的方式,自我控制可以由自己神经活动的信号来引导。为此,我们应用程序的主要目标有三个。首先,我们将扩展、评估和改进我们现有RT-fMRI系统的能力(LaConte等人,2007-附录A)。第二,考虑到线索诱导的渴望和认知控制在物质滥用的开始、维持和停止中的深刻不同作用,我们应用RT-fMRI来减少与渴望相关的神经激活,而增加与认知控制相关的神经激活。第三,我们将评估实施RT-fMRI神经反馈以帮助寻求治疗的药物使用者保持戒断的可行性和有效性。因此,我们的应用程序的首要目标是利用与渴望和认知控制相关的神经行为状态来开发一个最佳的神经反馈信号,该信号可以被物质滥用者有效地调节,以促进自我控制。我们预计,实现这一应用的目标将导致在随后的全面研究中进一步进行技术和治疗创新。R21阶段(第1年和第2年)的具体目标将提供对局部和分布式RT-fMRI方法的相对优势的评估,以及关于个人如何使用认知控制和欲望缓解策略很好地调节fMRI-计算机接口的量化结果。因此,我们的目标是:1.扩展和完善我们现有的实时fMRI反馈系统的功能。2.在实时环境中对线索诱发渴求和认知控制的神经信号进行调制。R33阶段(3年、4年、5年)的具体目标将为R21的发现提供关键的实验控制,并将探索将分布式和局部化方法相结合的RT-fMRI方法。我们还将评估使用基于功能磁共振成像的神经反馈来促进寻求治疗的吸烟者戒烟的可行性,为未来的大规模研究获得假说生成数据。因此,我们的目标是:3.改善神经反馈信号,并使用控制任务验证这些信号。4.在寻求治疗的吸烟者中试点实施神经反馈的可行性和有效性。 与公共健康相关:该项目将扩展磁共振成像的能力,以开发和改进实时反馈的方法。这个项目的目标是利用与渴望和认知控制相关的神经行为状态来开发一种最佳的神经反馈信号,该信号可以被物质滥用者有效地调节,以促进自我控制。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

PEARL H CHIU其他文献

PEARL H CHIU的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('PEARL H CHIU', 18)}}的其他基金

Sub-second neurochemistry of error signals and affective processing in depression
抑郁症中错误信号和情感处理的亚秒神经化学
  • 批准号:
    10665721
  • 财政年份:
    2022
  • 资助金额:
    $ 41.39万
  • 项目类别:
Sub-second neurochemistry of error signals and affective processing in depression
抑郁症中错误信号和情感处理的亚秒神经化学
  • 批准号:
    10453962
  • 财政年份:
    2022
  • 资助金额:
    $ 41.39万
  • 项目类别:
Evaluating overlap and distinctiveness in neurocomputational loss and reward elements of the RDoC matrix
评估 RDoC 矩阵的神经计算损失和奖励元素的重叠和独特性
  • 批准号:
    10455059
  • 财政年份:
    2021
  • 资助金额:
    $ 41.39万
  • 项目类别:
Evaluating overlap and distinctiveness in neurocomputational loss and reward elements of the RDoC matrix
评估 RDoC 矩阵的神经计算损失和奖励元素的重叠和独特性
  • 批准号:
    10647805
  • 财政年份:
    2021
  • 资助金额:
    $ 41.39万
  • 项目类别:
Making connections among social ties, neural sensitivity to social signals, and outcomes
在社会关系、社会信号的神经敏感性和结果之间建立联系
  • 批准号:
    10490468
  • 财政年份:
    2021
  • 资助金额:
    $ 41.39万
  • 项目类别:
Evaluating overlap and distinctiveness in neurocomputational loss and reward elements of the RDoC matrix
评估 RDoC 矩阵的神经计算损失和奖励元素的重叠和独特性
  • 批准号:
    10312509
  • 财政年份:
    2021
  • 资助金额:
    $ 41.39万
  • 项目类别:
Social influences on choices in adolescent substance use
社会对青少年物质使用选择的影响
  • 批准号:
    10378098
  • 财政年份:
    2021
  • 资助金额:
    $ 41.39万
  • 项目类别:
Social influences on choices in adolescent substance use
社会对青少年物质使用选择的影响
  • 批准号:
    10220529
  • 财政年份:
    2021
  • 资助金额:
    $ 41.39万
  • 项目类别:
Making connections among social ties, neural sensitivity to social signals, and outcomes
在社会关系、对社会信号的神经敏感性和结果之间建立联系
  • 批准号:
    10200497
  • 财政年份:
    2021
  • 资助金额:
    $ 41.39万
  • 项目类别:
Making connections among social ties, neural sensitivity to social signals, and outcomes
在社会关系、对社会信号的神经敏感性和结果之间建立联系
  • 批准号:
    10629370
  • 财政年份:
    2021
  • 资助金额:
    $ 41.39万
  • 项目类别:

相似国自然基金

Graphon mean field games with partial observation and application to failure detection in distributed systems
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于异构医学影像数据的深度挖掘技术及中枢神经系统重大疾病的精准预测
  • 批准号:
    61672236
  • 批准年份:
    2016
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目

相似海外基金

CAREER: Foundations of Scalable and Resilient Distributed Real-Time Decision Making in Open Multi-Agent Systems
职业:开放多代理系统中可扩展和弹性分布式实时决策的基础
  • 批准号:
    2339509
  • 财政年份:
    2024
  • 资助金额:
    $ 41.39万
  • 项目类别:
    Continuing Grant
Towards Real-Time Fine-Grained Tracking in Distributed Large-Scale RF Tag Systems
实现分布式大规模射频标签系统中的实时细粒度跟踪
  • 批准号:
    2225337
  • 财政年份:
    2023
  • 资助金额:
    $ 41.39万
  • 项目类别:
    Standard Grant
Distributed Machine Learning Methodology and System for Real-time Inference with Large-scale Point Clouds Towards Mobility Innovation
利用大规模点云进行实时推理的分布式机器学习方法和系统,迈向移动创新
  • 批准号:
    23H00464
  • 财政年份:
    2023
  • 资助金额:
    $ 41.39万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Collaborative Research: SAI-P: Public Multi-Access Edge Cloud (pMEC) as a Community-Based Distributed Computing Infrastructure for Emerging Real-Time Applications
合作研究:SAI-P:公共多路访问边缘云 (pMEC) 作为新兴实时应用的基于社区的分布式计算基础设施
  • 批准号:
    2228472
  • 财政年份:
    2022
  • 资助金额:
    $ 41.39万
  • 项目类别:
    Standard Grant
Real-Time Distributed Control for Low-Inertia Power Grids
低惯量电网的实时分布式控制
  • 批准号:
    RGPIN-2017-04008
  • 财政年份:
    2022
  • 资助金额:
    $ 41.39万
  • 项目类别:
    Discovery Grants Program - Individual
Distributed Optimization in Residential Power Grids for Real-Time Energy Management Using Blockchain Based Smart Contracts
使用基于区块链的智能合约对住宅电网进行分布式优化,实现实时能源管理
  • 批准号:
    RGPIN-2019-04632
  • 财政年份:
    2022
  • 资助金额:
    $ 41.39万
  • 项目类别:
    Discovery Grants Program - Individual
FPGA-based Real-time Simulation of Grid-Connected Distributed Solar Systems using Multi-Agent Control
基于 FPGA 的多智能体控制并网分布式太阳能系统实时仿真
  • 批准号:
    RGPIN-2022-03004
  • 财政年份:
    2022
  • 资助金额:
    $ 41.39万
  • 项目类别:
    Discovery Grants Program - Individual
Developing Statistical Tools and Visualization Methods for Understanding Heterogeneity in Distributed Networks: Applications to COVID-19 and Diabetes
开发统计工具和可视化方法来理解分布式网络中的异质性:在 COVID-19 和糖尿病中的应用
  • 批准号:
    468555
  • 财政年份:
    2022
  • 资助金额:
    $ 41.39万
  • 项目类别:
    Operating Grants
Collaborative Research: SAI-P: Public Multi-Access Edge Cloud (pMEC) as a Community-Based Distributed Computing Infrastructure for Emerging Real-Time Applications
合作研究:SAI-P:公共多路访问边缘云 (pMEC) 作为新兴实时应用的基于社区的分布式计算基础设施
  • 批准号:
    2228470
  • 财政年份:
    2022
  • 资助金额:
    $ 41.39万
  • 项目类别:
    Standard Grant
Flexible, ultrahigh-throughput and easy-implementing distributed coincidence processor for improving PET imaging performance
灵活、超高通量且易于实施的分布式符合处理器,用于提高 PET 成像性能
  • 批准号:
    10540325
  • 财政年份:
    2022
  • 资助金额:
    $ 41.39万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了