Physical and Chemical Cues in Tumor Cell Migration
肿瘤细胞迁移中的物理和化学线索
基本信息
- 批准号:8309478
- 负责人:
- 金额:$ 41.42万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:
- 资助国家:美国
- 起止时间:至
- 项目状态:未结题
- 来源:
- 关键词:AcetylationAddressAdhesionsAffectArchitectureAutocrine CommunicationBackBehaviorBiological ModelsBiologyBlood VesselsCancer BiologyCancer PatientCell LineCell PolarityCellsCentrosomeChemicalsChemotaxisClassificationClinicalCollagenComplexCuesCytoskeletonDisciplineDiseaseDisseminated Malignant NeoplasmDistantDrug Delivery SystemsEngineeringEnvironmentEpithelialExtracellular MatrixGelGenerationsGoalsImmigrationImmuneIndividualKnowledgeLeadMalignant - descriptorMalignant NeoplasmsMeasurementMeasuresMechanicsMembrane Protein TrafficMetastatic toMethodologyMicrofabricationMicrotubulesModelingMolecularMorbidity - disease rateMovementNeoplasm MetastasisNoduleNormal CellPalpableParacrine CommunicationPatientsPharmaceutical PreparationsPhenotypePhysicsPolymersPost-Translational Protein ProcessingPrimary NeoplasmProcessPropertyRecurrenceRelative (related person)RoleScientistSignal TransductionSignaling MoleculeSiteSolid NeoplasmSpeedStagingStromal CellsStructureTaxane CompoundTimeTissue ModelTissuesTranslatingTubulinWorkcancer cellcell growthcell motilitychemical functionchemotherapycrosslinkdensityextracellularfeedingin vitro Modelin vivomalignant breast neoplasmmigrationmolecular oncologymortalitynanoneoplastic cellneuronal cell bodynew therapeutic targetnovelphysical processphysical propertyphysical scienceresponsescaffoldtaxanetherapeutic targettooltumor
项目摘要
Cell migration is inherently a physical process, guided by extracellular and intracellular chemical gradients, physical
forces and structural architectures. In this proposal, we are answering the question: How do the physical components
of the tumor microenvironment contribute to metastatic migration? Our overarching hypothesis is that specific
chemical gradients created by cells within the 3D tumor microenvironment and changes in extracellular matrix
(ECM) enable and enhance cell migration during metastasis. We will employ concepts and tools t>om in the
physical sciences to dissect the complex chemical and physical microenvironmental factors guiding cell migration
during metastasis. To do this, we propose to use well-defined model tissue constructs where the cellular environment
is tightly controlled to describe and measure a set of physical parameters that define the invasive behavior of tumor
cells; the motility of a cell (Diffusivity, D), chemotactic response (Persistence, P), and the propulsive force (F). These
measurements will be made of well-characterized cell lines and breast cancer patient-derived primary tumor cells as a
function of the chemical and mechanical microenvironments, with and without targeted therapeutics. These parameters
will be correlated with disease stage, clinical classification of invasiveness and time to recurrence and will in turn be fed
back to our quantitative models to inform and refine them. Measurement of these parameters will lead to a more
complete description of the physical regulators of metastatic migration, and the identification of novel targets for
therapeutics which disrupt metastatic cell migration. This proposal will answer the following questions: Does cellular
physical force generation correlate with the metastatic tumor cell potential? Does the chemical microenvironment
created by surrounding immune cells and vascular cells control the metastatic migratory phenotype? Does the
increased mechanical stiffness of solid tumor ECM enable the migratory phenotype via increases in cell force? What is
the role of microtubule dynamics and selected tubulin posttranslational modifications in the process of cell migration in
response to distinct ECM chemomechanical cues? How do microtubule-targeting chemotherapeutic drugs modulate
these behaviors and how is individual patient sensitivity to therapy affected by the interplay between ECM cheniical
gradients and mechanical forces and resident tumor cells?
This work represents a paradigm shift over traditional 2D cell migration studies as it underscores the need to
systematically de-convolve the complex 3D chemical and mechanical microenvironmental conditions affecting tumor
cell migration. With this proposal we are integrating novel, quantitative methodologies from the discipline of physical
sciences to systematically and robustly answer fundamental and complex questions in cancer biology and molecular
oncology. Our work promises to understand the role of microenvironment in metastasis and has the potential of
"translating" this knowledge into actual clinical gains..
细胞迁移本质上是一个物理过程,由细胞外和细胞内的化学梯度、物理性质和生物学性质引导。
力和结构体系。在这个提案中,我们回答了这样一个问题:
肿瘤微环境的改变会导致转移性转移吗我们的首要假设是
三维肿瘤微环境中细胞产生的化学梯度和细胞外基质的变化
(ECM)在转移过程中使能并增强细胞迁移。我们将使用概念和工具,
物理科学,以剖析复杂的化学和物理微环境因素引导细胞迁移
在转移过程中。为了做到这一点,我们建议使用定义明确的模型组织结构,其中细胞环境
被严格控制以描述和测量一组定义肿瘤侵袭行为的物理参数
细胞;细胞的运动性(扩散性,D),趋化反应(持久性,P)和推进力(F)。这些
将对充分表征的细胞系和乳腺癌患者来源的原发性肿瘤细胞进行测量,
化学和机械微环境的功能,有和没有靶向治疗。这些参数
将与疾病阶段、侵袭性的临床分类和复发时间相关,
回到我们的定量模型中,为它们提供信息并加以完善。这些参数的测量将导致更多的
完整描述了转移性迁移的物理调节剂,并确定了新的靶点,
破坏转移性细胞迁移的治疗方法。该提案将回答以下问题:
物理力的产生与转移性肿瘤细胞的潜能相关吗?化学微环境
由周围的免疫细胞和血管细胞创造的控制转移迁移表型的细胞?是否
实体瘤ECM的机械刚度增加通过细胞力的增加使迁移表型成为可能?是什么
微管动力学和选择的微管蛋白翻译后修饰在细胞迁移过程中的作用,
对不同ECM化学机械信号的反应微管靶向化疗药物如何调节
这些行为以及个体患者对治疗的敏感性如何受到ECM化学之间的相互作用的影响,
梯度和机械力与肿瘤细胞的关系
这项工作代表了传统2D细胞迁移研究的范式转变,因为它强调了需要
系统地解卷积影响肿瘤的复杂3D化学和机械微环境条件
细胞迁移有了这个建议,我们正在整合新的,定量的方法,从学科的物理
科学系统地,有力地回答癌症生物学和分子生物学中的基本和复杂问题,
肿瘤学我们的工作有望了解微环境在转移中的作用,并有可能
将这些知识“转化”为实际的临床收益。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Cynthia A. Reinhart-King其他文献
Engineered models to parse apart the metastatic cascade
设计模型来解析转移级联
- DOI:
10.1038/s41698-019-0092-3 - 发表时间:
2019-08-21 - 期刊:
- 影响因子:8.000
- 作者:
Lauren A. Hapach;Jenna A. Mosier;Wenjun Wang;Cynthia A. Reinhart-King - 通讯作者:
Cynthia A. Reinhart-King
Cell–Cell Mechanical Communication in Cancer
- DOI:
10.1007/s12195-018-00564-x - 发表时间:
2018-12-07 - 期刊:
- 影响因子:5.000
- 作者:
Samantha C. Schwager;Paul V. Taufalele;Cynthia A. Reinhart-King - 通讯作者:
Cynthia A. Reinhart-King
The movement of mitochondria in breast cancer: internal motility and intercellular transfer of mitochondria
- DOI:
10.1007/s10585-024-10269-3 - 发表时间:
2024-03-15 - 期刊:
- 影响因子:3.200
- 作者:
Sarah Libring;Emily D. Berestesky;Cynthia A. Reinhart-King - 通讯作者:
Cynthia A. Reinhart-King
Cancer cell metabolic plasticity in migration and metastasis
- DOI:
10.1007/s10585-021-10102-1 - 发表时间:
2021-06-02 - 期刊:
- 影响因子:3.200
- 作者:
Jenna A. Mosier;Samantha C. Schwager;David A. Boyajian;Cynthia A. Reinhart-King - 通讯作者:
Cynthia A. Reinhart-King
Matrix Stiffness-Mediated DNA Methylation in Endothelial Cells
- DOI:
10.1007/s12195-024-00836-9 - 发表时间:
2025-01-17 - 期刊:
- 影响因子:5.000
- 作者:
Paul V. Taufalele;Hannah K. Kirkham;Cynthia A. Reinhart-King - 通讯作者:
Cynthia A. Reinhart-King
Cynthia A. Reinhart-King的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Cynthia A. Reinhart-King', 18)}}的其他基金
Sorting and characterization of cancer cells based on metabolic phenotype
基于代谢表型的癌细胞分选和表征
- 批准号:
10467279 - 财政年份:2022
- 资助金额:
$ 41.42万 - 项目类别:
Developing branch stress microscopy for the mechanobiology of 3D morphogenesis and invasive diseases
开发用于 3D 形态发生和侵袭性疾病的机械生物学的分支应力显微镜
- 批准号:
10539600 - 财政年份:2022
- 资助金额:
$ 41.42万 - 项目类别:
Developing branch stress microscopy for the mechanobiology of 3D morphogenesis and invasive diseases
开发用于 3D 形态发生和侵袭性疾病的机械生物学的分支应力显微镜
- 批准号:
10710186 - 财政年份:2022
- 资助金额:
$ 41.42万 - 项目类别:
Sorting and characterization of cancer cells based on metabolic phenotype
基于代谢表型的癌细胞分选和表征
- 批准号:
10590648 - 财政年份:2022
- 资助金额:
$ 41.42万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 41.42万 - 项目类别:
Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 41.42万 - 项目类别:
Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 41.42万 - 项目类别:
Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 41.42万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 41.42万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 41.42万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 41.42万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 41.42万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 41.42万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 41.42万 - 项目类别:
Research Grant