Evaluation of In Vivo Knee Load Predictions using Instrumented Implants
使用仪器植入物评估体内膝关节负荷预测
基本信息
- 批准号:8270573
- 负责人:
- 金额:$ 52.66万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-08-01 至 2014-04-30
- 项目状态:已结题
- 来源:
- 关键词:AffectAreaArticular MuscleBiomechanicsBiomedical EngineeringCalibrationCerebral PalsyClinicalClinical TreatmentClinical assessmentsCommunitiesComputer softwareDataData SetDegenerative polyarthritisDiagnosisDiseaseEvaluationEvaluation StudiesFoundationsFreedomFundingGaitGoalsHealthHumanImageImplantIndividualJointsKneeKnowledgeLigamentsMeasurementMeasuresMethodsModelingMotionMotorMovementMuscleMusculoskeletalOperative Surgical ProceduresOsteoporosisPatientsPatternPositioning AttributeProcessPropertyQuality of lifeQuantitative EvaluationsReactionRehabilitation therapyResearchResearch PersonnelSkeletonSolutionsStrokeStructureTendon structureTestingTissue EngineeringUnited States National Institutes of HealthValidationWalkingbasebonedata modelingdesignhuman dataimprovedin vivoinstrumentjoint loadingknee replacement arthroplastymodels and simulationmuscle strengthneuromusculoskeletalnovel strategiesopen sourcesymposium
项目摘要
DESCRIPTION (provided by applicant): The goal of this project is to critically evaluate the ability of musculoskeletal models to predict muscle and joint contact forces in the knee reliably during walking. Knowledge of these internal loads could improve the diagnosis and treatment of neuromusculoskeletal disorders that affect walking ability (e.g., stroke, cerebral palsy, osteoarthritis). Because internal loads cannot be measured clinically, musculoskeletal models have become the primary means for developing estimates. However, if model estimates are inaccurate, clinical assessments or treatments based on these estimates could be ineffective or even harmful. We propose to evaluate musculoskeletal model estimates of muscle and joint contact forces in the knee during walking using in vivo contact force measurements obtained from patients implanted with force-measuring knee replacements. These unique internal load measurements will allow us to evaluate contact force estimates directly and muscle force estimates indirectly. For each of the five patients tested, we will collect a broad range of movement data (tibial contact force, motion capture, ground reaction force, EMG, fluoroscopic, muscle strength). We will then enhance OpenSim open-source musculoskeletal modeling software with new capabilities (e.g., "fast" contact model modeling methods, new optimization methods for predicting muscle forces based on EMG measurements) to permit construction of a high-fidelity musculoskeletal model of each patient. The ability of each patient-specific model to reproduce the patient's tibial contact force, EMG, and other movement data will be evaluated using existing and new muscle and contact force prediction methods. We will also hold an annual competition at the ASME Summer Bioengineering Conference where researchers will use data and models we make available to predict the in vivo tibial contact forces without knowing them in advance. This musculoskeletal model validation effort will be the most extensive ever performed, and the data, models, and ideas generated will provide a foundation for further evaluation studies for years to come.
PUBLIC HEALTH RELEVANCE: Musculoskeletal models could facilitate the design of effective, customized treatments for neuromusculoskeletal disorders such as stroke, cerebral palsy, and osteoarthritis. However, before they can be used for this purpose, their predictions need to be validated. This study proposes unique data and methods to perform such a validation with a focus on the knee during walking.
描述(由申请人提供):本项目的目标是严格评价肌肉骨骼模型在步行过程中可靠预测膝关节肌肉和关节接触力的能力。了解这些内部负荷可以改善影响行走能力的神经肌肉骨骼疾病的诊断和治疗(例如,中风、脑瘫、骨关节炎)。由于内部负荷不能在临床上测量,肌肉骨骼模型已成为发展估计的主要手段。然而,如果模型估计不准确,基于这些估计的临床评估或治疗可能无效甚至有害。我们建议使用从植入测力膝关节置换术患者中获得的体内接触力测量值,评估行走过程中膝关节肌肉和关节接触力的肌肉骨骼模型估计值。这些独特的内部载荷测量将使我们能够直接评估接触力估计值,间接评估肌肉力估计值。对于接受测试的五名患者中的每一名,我们将收集广泛的运动数据(胫骨接触力、运动捕捉、地面反作用力、EMG、X线透视、肌肉力量)。然后,我们将增强OpenSim开源肌肉骨骼建模软件的新功能(例如,“快速”接触模型建模方法、用于基于EMG测量来预测肌肉力的新优化方法),以允许构建每个患者的高保真肌肉骨骼模型。将使用现有和新的肌肉和贴靠力预测方法评价每个患者特定模型再现患者胫骨贴靠力、EMG和其他运动数据的能力。我们还将在ASME夏季生物工程会议上举办年度竞赛,研究人员将使用我们提供的数据和模型来预测体内胫骨接触力,而无需提前了解它们。这种肌肉骨骼模型验证工作将是有史以来最广泛的,所产生的数据,模型和想法将为未来几年的进一步评估研究提供基础。
公共卫生相关性:肌肉骨骼模型可以促进设计有效的,定制的治疗神经肌肉骨骼疾病,如中风,脑瘫和骨关节炎。然而,在他们可以用于这一目的之前,他们的预测需要得到验证。这项研究提出了独特的数据和方法来执行这样的验证,重点是在步行过程中的膝盖。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Darryl D. D'Lima其他文献
Darryl D. D'Lima的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Darryl D. D'Lima', 18)}}的其他基金
Evaluation of In Vivo Knee Load Predictions using Instrumented Implants
使用仪器植入物评估体内膝关节负荷预测
- 批准号:
8113161 - 财政年份:2010
- 资助金额:
$ 52.66万 - 项目类别:
Evaluation of In Vivo Knee Load Predictions using Instrumented Implants
使用仪器植入物评估体内膝关节负荷预测
- 批准号:
7985983 - 财政年份:2010
- 资助金额:
$ 52.66万 - 项目类别:
Evaluation of In Vivo Knee Load Predictions using Instrumented Implants
使用仪器植入物评估体内膝关节负荷预测
- 批准号:
8464099 - 财政年份:2010
- 资助金额:
$ 52.66万 - 项目类别:
Real-time monitoring of knee forces and kinematics in vivo
实时监测体内膝关节受力和运动学
- 批准号:
7925804 - 财政年份:2009
- 资助金额:
$ 52.66万 - 项目类别:
Real-time monitoring of knee forces and kinematics in vivo
实时监测体内膝关节受力和运动学
- 批准号:
7713164 - 财政年份:2009
- 资助金额:
$ 52.66万 - 项目类别:
相似国自然基金
层出镰刀菌氮代谢调控因子AreA 介导伏马菌素 FB1 生物合成的作用机理
- 批准号:2021JJ40433
- 批准年份:2021
- 资助金额:0.0 万元
- 项目类别:省市级项目
寄主诱导梢腐病菌AreA和CYP51基因沉默增强甘蔗抗病性机制解析
- 批准号:32001603
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
AREA国际经济模型的移植.改进和应用
- 批准号:18870435
- 批准年份:1988
- 资助金额:2.0 万元
- 项目类别:面上项目
相似海外基金
Onboarding Rural Area Mathematics and Physical Science Scholars
农村地区数学和物理科学学者的入职
- 批准号:
2322614 - 财政年份:2024
- 资助金额:
$ 52.66万 - 项目类别:
Standard Grant
TRACK-UK: Synthesized Census and Small Area Statistics for Transport and Energy
TRACK-UK:交通和能源综合人口普查和小区域统计
- 批准号:
ES/Z50290X/1 - 财政年份:2024
- 资助金额:
$ 52.66万 - 项目类别:
Research Grant
Wide-area low-cost sustainable ocean temperature and velocity structure extraction using distributed fibre optic sensing within legacy seafloor cables
使用传统海底电缆中的分布式光纤传感进行广域低成本可持续海洋温度和速度结构提取
- 批准号:
NE/Y003365/1 - 财政年份:2024
- 资助金额:
$ 52.66万 - 项目类别:
Research Grant
Point-scanning confocal with area detector
点扫描共焦与区域检测器
- 批准号:
534092360 - 财政年份:2024
- 资助金额:
$ 52.66万 - 项目类别:
Major Research Instrumentation
Collaborative Research: Scalable Manufacturing of Large-Area Thin Films of Metal-Organic Frameworks for Separations Applications
合作研究:用于分离应用的大面积金属有机框架薄膜的可扩展制造
- 批准号:
2326714 - 财政年份:2024
- 资助金额:
$ 52.66万 - 项目类别:
Standard Grant
Collaborative Research: Scalable Manufacturing of Large-Area Thin Films of Metal-Organic Frameworks for Separations Applications
合作研究:用于分离应用的大面积金属有机框架薄膜的可扩展制造
- 批准号:
2326713 - 财政年份:2024
- 资助金额:
$ 52.66万 - 项目类别:
Standard Grant
Unlicensed Low-Power Wide Area Networks for Location-based Services
用于基于位置的服务的免许可低功耗广域网
- 批准号:
24K20765 - 财政年份:2024
- 资助金额:
$ 52.66万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
- 批准号:
2427233 - 财政年份:2024
- 资助金额:
$ 52.66万 - 项目类别:
Standard Grant
Postdoctoral Fellowship: OPP-PRF: Tracking Long-Term Changes in Lake Area across the Arctic
博士后奖学金:OPP-PRF:追踪北极地区湖泊面积的长期变化
- 批准号:
2317873 - 财政年份:2024
- 资助金额:
$ 52.66万 - 项目类别:
Standard Grant
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
- 批准号:
2427232 - 财政年份:2024
- 资助金额:
$ 52.66万 - 项目类别:
Standard Grant