HARDI Mapping of Disease Effects on the Brain

哈滴绘制疾病对大脑影响的图谱

基本信息

  • 批准号:
    8323086
  • 负责人:
  • 金额:
    $ 64.27万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-09-30 至 2016-02-29
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): This project advances the state-of-the-art in High-Angular Resolution Diffusion Imaging (HARDI), a powerful new imaging approach that can resolve fiber pathways in the brain with spectacular precision. Uniting expertise at an NIH-funded National Neuroimaging Resource (at UCLA), the University of Minnesota Center for Magnetic Resonance Research, and Siemens Corporate Research, we aim to demonstrate that HARDI provides new and vital information in assessing clinically important brain degeneration in HIV/AIDS and Alzheimer's Disease (AD), extending our initial findings that revealed how these diseases spread dynamically in the living brain. HARDI applies magnetic field gradients to the brain, in up to 256 different directions, to precisely detail the directions, pathways, and integrity of fibers in the brain. HARDI datasets cannot yet be compared across subjects without new mathematics that treats these signals as lying in Riemannian manifolds. This project provides those tools. Our research will (1) advance the mathematics - based in part on geometry, statistics, and Riemannian manifolds - to extract information from HARDI, and (2) quantify how much HARDI can improve our understanding of brain degeneration, and what factors affect it. Using the extra detail in HARDI images, we will develop a method to enable large-scale multi-subject comparison of HARDI images, by fluidly aligning 3D images across subjects (Aim 1; Multi-subject Alignment). This is the first step towards population studies of disease, e.g., comparing fiber integrity across patient populations to examine gene or treatment effects, or comparing a patient with a normative database. Validation on phantoms and synthetic data is a key part of all Aims. In Aim 2 (Segmentation and Connectivity Mapping), we will develop algorithms to map white matter connectivity, and identify clinically important fiber pathways in the brain, based on the full angular information of HARDI. In Aim 3 (HARDI Statistics), optimized voxel-based statistics will compare HARDI data, point-by-point, across populations, to identify systematic fiber deficits, comparing fiber integrity and connectivity with a normal reference population. In Aim 4 (HARDI Maps of Brain Degeneration), we will evaluate HARDI for revealing new descriptors of AD and HIV-related brain degeneration: two illnesses on which we have published prolifically, where measures of white matter degeneration are sorely lacking. The societal burden of AD and HIV is growing; HIV affects 40 million people worldwide, and AD affects 4.5 million individuals in the U.S. alone; everyone is at risk. Our powerful markers of brain white matter degeneration will help us determine how much benefit HARDI's added resolution provides. This new analytic approach will greatly advance our ability to understand pathological brain degeneration, providing sensitive new measures to track it. This has immediate value for drug trials and patient monitoring. As always, we will share all algorithms, protocols, and images, with 50+ collaborating laboratories. PUBLIC HEALTH RELEVANCE: This project develops tools that unleash the full power of HARDI (high-angular resolution diffusion imaging) to advance clinical studies of the brain. HARDI applies magnetic field gradients to the brain in up to 256 different directions to precisely detail the directions, pathways, and integrity of fibers and their connections. We will evaluate HARDI for understanding and revealing new descriptors of Alzheimer's Disease and HIV-related brain white matter degeneration - with immediate value for drug trials and patient monitoring in HIV, which affects 40 million people worldwide, and in AD, which affects 4.5 million individuals in the U.S. alone.
描述(由申请人提供):该项目推进了高角度分辨率扩散成像(HARDI)的最新技术,这是一种强大的新成像方法,可以以惊人的精度解析大脑中的纤维通路。结合NIH资助的国家神经影像资源(加州大学洛杉矶分校),明尼苏达大学磁共振研究中心和西门子公司研究的专业知识,我们的目标是证明HARDI在评估艾滋病毒/艾滋病和阿尔茨海默病(AD)的临床重要脑变性方面提供了新的重要信息,扩展了我们的初步发现,揭示了这些疾病如何在活脑中动态传播。HARDI在多达256个不同的方向上向大脑施加磁场梯度,以精确地详细描述大脑中纤维的方向、路径和完整性。如果没有新的数学将这些信号视为黎曼流形,HARDI数据集还不能在不同学科之间进行比较。本项目提供了这些工具。我们的研究将(1)推进数学-部分基于几何,统计和黎曼流形-从HARDI中提取信息,(2)量化HARDI可以在多大程度上提高我们对大脑退化的理解,以及影响它的因素。使用HARDI图像中的额外细节,我们将开发一种方法,使大规模的多学科比较HARDI图像,通过在受试者之间流畅地对齐3D图像(目标1;多受试者对齐)。这是对疾病进行人群研究的第一步,例如,比较患者群体中的纤维完整性以检查基因或治疗效果,或将患者与标准数据库进行比较。对幻影和合成数据的验证是所有目标的关键部分。在目标2(分割和连通性映射)中,我们将开发算法来映射白色物质连通性,并根据HARDI的完整角度信息识别大脑中临床重要的纤维通路。在目标3(HARDI统计)中,优化的基于体素的统计将在人群中逐点比较HARDI数据,以识别系统性纤维缺陷,将纤维完整性和连接性与正常参考人群进行比较。在目标4(脑退化的HARDI地图)中,我们将评估HARDI揭示AD和HIV相关脑退化的新描述符:我们已经大量发表的两种疾病,其中严重缺乏白色退化的措施。AD和HIV的社会负担正在增加; HIV影响全球4000万人,仅在美国就影响450万人;每个人都有风险。我们强大的大脑白色物质退化标记将帮助我们确定HARDI增加的分辨率提供了多少好处。这种新的分析方法将大大提高我们理解病理性脑退化的能力,提供灵敏的新措施来跟踪它。这对药物试验和患者监测具有直接价值。一如既往,我们将与50多个合作实验室共享所有算法、协议和图像。公共卫生相关性:该项目开发的工具可以释放HARDI(高角度分辨率扩散成像)的全部功能,以推进大脑的临床研究。HARDI在多达256个不同的方向上向大脑施加磁场梯度,以精确地详细描述纤维及其连接的方向、路径和完整性。我们将评估HARDI以了解和揭示阿尔茨海默病和艾滋病毒相关脑白色变性的新描述符-对艾滋病毒药物试验和患者监测具有直接价值,艾滋病毒影响全球4000万人,AD影响美国450万人。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Dynamical Clustering Model of Brain Connectivity Inspired by the N -Body Problem.
受 N 体问题启发的大脑连接动态聚类模型。
Online agglomerative hierarchical clustering of neural fiber tracts.
神经纤维束的在线凝聚层次聚类。
Sequential Hierarchical Agglomerative Clustering of White Matter Fiber Pathways.
白质纤维通路的顺序分层聚集聚类。
GROUP ACTION INDUCED AVERAGING FOR HARDI PROCESSING.
SKULL-STRIPPING WITH DEFORMABLE ORGANISMS.
用可变形生物剥去头骨。
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

PAUL M THOMPSON其他文献

PAUL M THOMPSON的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('PAUL M THOMPSON', 18)}}的其他基金

CARE4Kids: Imaging Biomarker Core
CARE4Kids:成像生物标志物核心
  • 批准号:
    10203601
  • 财政年份:
    2021
  • 资助金额:
    $ 64.27万
  • 项目类别:
ENIGMA World Aging Center
ENIGMA世界老龄化中心
  • 批准号:
    10576402
  • 财政年份:
    2021
  • 资助金额:
    $ 64.27万
  • 项目类别:
ENIGMA World Aging Center
ENIGMA世界老龄化中心
  • 批准号:
    10328963
  • 财政年份:
    2021
  • 资助金额:
    $ 64.27万
  • 项目类别:
FiberNET: Deep learning to evaluate brain tract integrity worldwide and in AD
FiberNET:深度学习评估全球和 AD 脑道完整性
  • 批准号:
    10814696
  • 财政年份:
    2020
  • 资助金额:
    $ 64.27万
  • 项目类别:
Neuroimaging Core
神经影像核心
  • 批准号:
    10216924
  • 财政年份:
    2018
  • 资助金额:
    $ 64.27万
  • 项目类别:
ENIGMA-SD: Understanding Sex Differences in Global Mental Health through ENIGMA
ENIGMA-SD:通过 ENIGMA 了解全球心理健康中的性别差异
  • 批准号:
    9892045
  • 财政年份:
    2018
  • 资助金额:
    $ 64.27万
  • 项目类别:
Neuroimaging Core
神经影像核心
  • 批准号:
    10456750
  • 财政年份:
    2018
  • 资助金额:
    $ 64.27万
  • 项目类别:
Multi-Source Sparse Learning to Identify MCI and Predict Decline
多源稀疏学习识别 MCI 并预测衰退
  • 批准号:
    9008380
  • 财政年份:
    2016
  • 资助金额:
    $ 64.27万
  • 项目类别:
Data Science Research
数据科学研究
  • 批准号:
    9108711
  • 财政年份:
    2016
  • 资助金额:
    $ 64.27万
  • 项目类别:
ENIGMA Center for Worldwide Medicine, Imaging & Genomics
ENIGMA 全球医学影像中心
  • 批准号:
    9108710
  • 财政年份:
    2014
  • 资助金额:
    $ 64.27万
  • 项目类别:

相似海外基金

RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
  • 批准号:
    2327346
  • 财政年份:
    2024
  • 资助金额:
    $ 64.27万
  • 项目类别:
    Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
  • 批准号:
    2312555
  • 财政年份:
    2024
  • 资助金额:
    $ 64.27万
  • 项目类别:
    Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
  • 批准号:
    BB/Z514391/1
  • 财政年份:
    2024
  • 资助金额:
    $ 64.27万
  • 项目类别:
    Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
  • 批准号:
    ES/Z502595/1
  • 财政年份:
    2024
  • 资助金额:
    $ 64.27万
  • 项目类别:
    Fellowship
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
  • 批准号:
    ES/Z000149/1
  • 财政年份:
    2024
  • 资助金额:
    $ 64.27万
  • 项目类别:
    Research Grant
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
  • 批准号:
    23K24936
  • 财政年份:
    2024
  • 资助金额:
    $ 64.27万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
  • 批准号:
    2901648
  • 财政年份:
    2024
  • 资助金额:
    $ 64.27万
  • 项目类别:
    Studentship
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
  • 批准号:
    2301846
  • 财政年份:
    2023
  • 资助金额:
    $ 64.27万
  • 项目类别:
    Standard Grant
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
  • 批准号:
    488039
  • 财政年份:
    2023
  • 资助金额:
    $ 64.27万
  • 项目类别:
    Operating Grants
How motor impairments due to neurodegenerative diseases affect masticatory movements
神经退行性疾病引起的运动障碍如何影响咀嚼运动
  • 批准号:
    23K16076
  • 财政年份:
    2023
  • 资助金额:
    $ 64.27万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了