Nanoscale energy production for implantable medical devices
用于植入式医疗设备的纳米级能量生产
基本信息
- 批准号:8306909
- 负责人:
- 金额:$ 76.23万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-09-30 至 2014-07-31
- 项目状态:已结题
- 来源:
- 关键词:AddressBindingBiologicalCoupledDataDevicesEnzymesGermGlucoseGlycolysisHybridsMechanicsMedicalMedical DeviceModelingNatural regenerationPathway interactionsPharmaceutical PreparationsPhysiologyProductionRecombinantsRestSeriesSystemTechnologyTestingTissuesWorkdesignenzyme activityimplantable deviceinnovationnanobiotechnologynanodevicenanoscaleprotein functionsperm cell
项目摘要
Nanobiotechnology offers the possibility of new forms of medical treatments, such as implantable devices
that carry out biological or mechanical functions, or deliver drugs to specific tissues. Because proteins function
so efficiently at this small scale, they will likely be major components of nanodevices. However, a number of
important obstacles must be overcome for nanodevices to realize their potential. One of the most critical
problems is how to supply implantable nanodevices with energy. Our work on the physiology of mammalian
sperm has inspired us with a strategy to address this important issue. Sperm generate ATP throughout the
flagellar principal piece by using glycolytic enzymes tethered to a cytoskeletal support by means of germ cellspecific
targeting domains. We hypothesize that by identifying and modifying these domains, we can generate
recombinant glycolytic enzymes that can be bound to a support and retain function. As proof of principle, we
have made modified forms of the first two enzymes in this pathway, and show their activities in series when
coupled to the same support. To our knowledge, this is the first demonstration of sequential enzymatic
activities in a multi-step pathway on a hybrid organic-inorganic device. These data also support our hypothesis
that sperm provide a natural model of how to produce ATP locally on nanodevices.
We propose to construct similarly modified recombinant forms of the rest of the enzymes of glycolysis, as
well as an additional enzyme that will be needed for co-enzyme regeneration. We shall then test the activities
of these enzymes individually, in sub-assemblies, and in series on single supports in our effort to design a
system through which implantable nanodevices can produce their own energy from freely available circulating
glucose. If successful, our innovative strategy will produce an enabling technology that should advance a
variety of medical applications for nanobiotechnology.
纳米生物技术提供了新形式的医学治疗的可能性,例如植入式设备
它们执行生物或机械功能,或将药物输送到特定组织。因为蛋白质的功能
在如此小的尺度上如此有效,它们将可能成为纳米器件的主要组成部分。但若干
纳米器件要实现其潜力,就必须克服重要的障碍。一个最关键的
问题是如何为可植入的纳米装置提供能量。我们对哺乳动物生理学的研究
精子启发了我们解决这一重要问题的策略。精子产生ATP的整个过程
鞭毛主片通过使用糖酵解酶系到细胞骨架支持,通过生殖细胞特异性
靶向域。我们假设,通过识别和修改这些域,我们可以生成
重组糖酵解酶可以结合到支持物上并保留功能。作为原则的证明,我们
已经对这一途径中的前两种酶进行了修饰,并在下列情况下显示出它们的活性:
连接到同一个支架上。据我们所知,这是第一次证明顺序酶促反应,
在杂化有机-无机装置上的多步途径中的活性。这些数据也支持了我们的假设
精子提供了一个天然的模型,可以在纳米设备上局部产生ATP。
我们建议构建糖酵解其余酶的类似修饰的重组形式,
以及辅酶再生所需的额外酶。然后,我们将测试活动
这些酶单独,在子组件,并在单一的支持,在我们的努力,设计一个系列
可植入纳米设备可以通过自由循环产生自己的能量的系统
葡萄糖如果成功的话,我们的创新战略将产生一种使能技术,
纳米生物技术的各种医疗应用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(1)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ALEXANDER J TRAVIS其他文献
ALEXANDER J TRAVIS的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ALEXANDER J TRAVIS', 18)}}的其他基金
Membrane lipid regulation of calcium channels in sperm.
精子钙通道的膜脂调节。
- 批准号:
9894820 - 财政年份:2019
- 资助金额:
$ 76.23万 - 项目类别:
Membrane lipid regulation of calcium channels in sperm.
精子钙通道的膜脂调节。
- 批准号:
10591574 - 财政年份:2019
- 资助金额:
$ 76.23万 - 项目类别:
Membrane lipid regulation of calcium channels in sperm.
精子钙通道的膜脂调节。
- 批准号:
10352433 - 财政年份:2019
- 资助金额:
$ 76.23万 - 项目类别:
Nanoscale energy production for implantable medical devices
用于植入式医疗设备的纳米级能量生产
- 批准号:
8516368 - 财政年份:2009
- 资助金额:
$ 76.23万 - 项目类别:
Nanoscale energy production for implantable medical devices
用于植入式医疗设备的纳米级能量生产
- 批准号:
7939732 - 财政年份:2009
- 资助金额:
$ 76.23万 - 项目类别:
Nanoscale energy production for implantable medical devices
用于植入式医疗设备的纳米级能量生产
- 批准号:
8118429 - 财政年份:2009
- 资助金额:
$ 76.23万 - 项目类别:
Nanoscale energy production for implantable medical devices
用于植入式医疗设备的纳米级能量生产
- 批准号:
7846445 - 财政年份:2009
- 资助金额:
$ 76.23万 - 项目类别:
ORGANIZATION AND FUNCTIONS OF LIPID RAFTS IN SPERMATOZOA
精子中脂筏的组织和功能
- 批准号:
6710279 - 财政年份:2004
- 资助金额:
$ 76.23万 - 项目类别:
ORGANIZATION AND FUNCTIONS OF LIPID RAFTS IN SPERMATOZOA
精子中脂筏的组织和功能
- 批准号:
7150004 - 财政年份:2004
- 资助金额:
$ 76.23万 - 项目类别:
ORGANIZATION AND FUNCTIONS OF LIPID RAFTS IN SPERMATOZOA
精子中脂筏的组织和功能
- 批准号:
7333287 - 财政年份:2004
- 资助金额:
$ 76.23万 - 项目类别:
相似国自然基金
帽结合蛋白(cap binding protein)调控乙烯信号转导的分子机制
- 批准号:32170319
- 批准年份:2021
- 资助金额:58.00 万元
- 项目类别:面上项目
帽结合蛋白(cap binding protein)调控乙烯信号转导的分子机制
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:
ID1 (Inhibitor of DNA binding 1) 在口蹄疫病毒感染中作用机制的研究
- 批准号:31672538
- 批准年份:2016
- 资助金额:62.0 万元
- 项目类别:面上项目
番茄EIN3-binding F-box蛋白2超表达诱导单性结实和果实成熟异常的机制研究
- 批准号:31372080
- 批准年份:2013
- 资助金额:80.0 万元
- 项目类别:面上项目
P53 binding protein 1 调控乳腺癌进展转移及化疗敏感性的机制研究
- 批准号:81172529
- 批准年份:2011
- 资助金额:58.0 万元
- 项目类别:面上项目
DBP(Vitamin D Binding Protein)在多发性硬化中的作用和相关机制的蛋白质组学研究
- 批准号:81070952
- 批准年份:2010
- 资助金额:35.0 万元
- 项目类别:面上项目
研究EB1(End-Binding protein 1)的癌基因特性及作用机制
- 批准号:30672361
- 批准年份:2006
- 资助金额:24.0 万元
- 项目类别:面上项目
相似海外基金
I-Corps: Translation Potential of Real-time, Ultrasensitive Electrical Transduction of Biological Binding Events for Pathogen and Disease Detection
I-Corps:生物结合事件的实时、超灵敏电转导在病原体和疾病检测中的转化潜力
- 批准号:
2419915 - 财政年份:2024
- 资助金额:
$ 76.23万 - 项目类别:
Standard Grant
Modelling drug binding to biological ion channels
模拟药物与生物离子通道的结合
- 批准号:
2747257 - 财政年份:2022
- 资助金额:
$ 76.23万 - 项目类别:
Studentship
Elucidation of biological functions of the NCBP3 RNA-binding protein using a novel mutant mouse strain
使用新型突变小鼠品系阐明 NCBP3 RNA 结合蛋白的生物学功能
- 批准号:
22K06065 - 财政年份:2022
- 资助金额:
$ 76.23万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Identifying binding partners, biological substrates and antisense oligonucleotides regulating expression of short and long ACE2.
识别调节短和长 ACE2 表达的结合伴侣、生物底物和反义寡核苷酸。
- 批准号:
BB/V019848/1 - 财政年份:2021
- 资助金额:
$ 76.23万 - 项目类别:
Research Grant
Structure and function of pufferfish toxin, tetrodotoxin, binding proteins as biological defense agent
河豚毒素、河豚毒素、结合蛋白作为生物防御剂的结构和功能
- 批准号:
19K06241 - 财政年份:2019
- 资助金额:
$ 76.23万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The molecular and biological roles of growth inhibiting chromatin binding proteins
生长抑制染色质结合蛋白的分子和生物学作用
- 批准号:
nhmrc : GNT1143612 - 财政年份:2018
- 资助金额:
$ 76.23万 - 项目类别:
Project Grants
Investigating a biological specificity conundrum: the role of dynamics in transcription factor binding
研究生物特异性难题:动力学在转录因子结合中的作用
- 批准号:
406750 - 财政年份:2018
- 资助金额:
$ 76.23万 - 项目类别:
Studentship Programs
Biological effect and preventive method for human serum albumin binding to transboundary air borne PM2.5.
人血清白蛋白与跨境空气PM2.5结合的生物学效应及预防方法。
- 批准号:
18H03039 - 财政年份:2018
- 资助金额:
$ 76.23万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
The molecular and biological roles of growth inhibiting chromatin binding proteins
生长抑制染色质结合蛋白的分子和生物学作用
- 批准号:
nhmrc : 1143612 - 财政年份:2018
- 资助金额:
$ 76.23万 - 项目类别:
Project Grants
Electrical Detection of Small Molecule Binding to Biological Receptors using Organic Thin Film Transistors : A new approach for label free assays
使用有机薄膜晶体管对小分子与生物受体结合的电检测:一种无标记测定的新方法
- 批准号:
133593 - 财政年份:2018
- 资助金额:
$ 76.23万 - 项目类别:
Feasibility Studies