Quantitative diagnosis of breast cancer with ultrasound

乳腺癌的超声定量诊断

基本信息

  • 批准号:
    8387042
  • 负责人:
  • 金额:
    $ 29.8万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-12-01 至 2014-11-30
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): The goal of this study is to design quantitative methods that clinicians can use to supplement their visual interpretation of sonograms for differentiating benign and malignant solid breast masses. The hypothesis is that combining quantitative methods with clinicians' assessment of images will improve the accuracy of diagnosis and reduce the number of false positive or unnecessary biopsies. Our preliminary study shows that certain sonographic features derived from lesion margin, shape, and echo characteristics can help differentiate benign and malignant solid masses. In this application, we propose to build on our initial success and develop a diagnostic system on an ultrasound scanner that provides the end user with online estimates of probability of malignancy from quantitative analysis of the breast ultrasound images. The program has four specific aims. In Specific Aim 1, ultrasound images of breast masses from 400 patients will be acquired under controlled and well- defined experimental conditions. In Specific Aim 2, new approaches will be developed to detect mass margins and to describe these features quantitatively. The qualitative features of the masses that clinicians use in routine diagnosis will also be identified. The quantitative and the qualitative feature sets will be used individually with novel classification methods based on logistic regression, neural networks and radial basis function classifiers to formulate a decision tree for cancer diagnosis. The diagnostic performance of each classification scheme and feature set will be evaluated by ROC analysis. In Specific Aim 3, the qualitative and the quantitative feature sets will be combined, integrating the intuitive medical experience of the clinicians with the precision of quantitative measurements. In the final phase of the program, Specific Aim 4, the best performing feature set and classification scheme will be implemented on an ultrasound scanner for online diagnosis of malignant and benign breast masses. This program integrates qualitative clinical and quantitative computer approaches for breast cancer diagnosis. We expect to develop a new diagnostic system that determines probability of malignancy, which clinicians could use as an online second opinion when making diagnostic decisions during the performance of a breast ultrasound examination.
描述(由申请人提供):本研究的目的是设计定量方法,临床医生可以使用它来补充超声图像的视觉解释,以区分良性和恶性乳腺实体肿块。假设将定量方法与临床医生对图像的评估相结合,将提高诊断的准确性,减少假阳性或不必要的活检次数。我们的初步研究表明,从病变边缘、形状和回声特征得出的某些超声特征可以帮助区分良恶性实体肿块。在这个应用中,我们建议在我们最初成功的基础上,开发一个超声扫描仪诊断系统,通过对乳房超声图像的定量分析,为最终用户提供恶性肿瘤概率的在线估计。该计划有四个具体目标。在具体目标1中,将在控制和明确的实验条件下获得来自400名患者的乳腺肿块的超声图像。在具体目标2中,将开发新的方法来检测质量边缘并定量描述这些特征。临床医生在常规诊断中使用的肿块的定性特征也将被确定。定量和定性特征集将分别与基于逻辑回归、神经网络和径向基函数分类器的新型分类方法一起使用,以制定癌症诊断的决策树。每个分类方案和特征集的诊断性能将通过ROC分析进行评估。在具体目标3中,定性和定量特征集将相结合,将临床医生的直观医疗经验与定量测量的精度相结合。在项目的最后阶段,Specific Aim 4,将在超声扫描仪上实施表现最好的特征集和分类方案,用于在线诊断乳腺恶性和良性肿块。该项目整合了定性临床和定量计算机方法用于乳腺癌诊断。我们期望开发一种新的诊断系统来确定恶性肿瘤的可能性,临床医生在进行乳房超声检查时可以将其作为在线第二意见来做出诊断决定。

项目成果

期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Machine learning to improve breast cancer diagnosis by multimodal ultrasound.
机器学习通过多模态超声改善乳腺癌诊断。
Color Doppler Ultrasound Improves Machine Learning Diagnosis of Breast Cancer.
  • DOI:
    10.3390/diagnostics10090631
  • 发表时间:
    2020-08-25
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Moustafa AF;Cary TW;Sultan LR;Schultz SM;Conant EF;Venkatesh SS;Sehgal CM
  • 通讯作者:
    Sehgal CM
Observer Variability in BI-RADS Ultrasound Features and Its Influence on Computer-Aided Diagnosis of Breast Masses.
  • DOI:
    10.4236/abcr.2015.41001
  • 发表时间:
    2015-01-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sultan, Laith R;Bouzghar, Ghizlane;Sehgal, Chandra M
  • 通讯作者:
    Sehgal, Chandra M
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

CHANDRA M SEHGAL其他文献

CHANDRA M SEHGAL的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('CHANDRA M SEHGAL', 18)}}的其他基金

Antivascular ultrasound therapy of primary liver neoplasia
原发性肝肿瘤的超声抗血管治疗
  • 批准号:
    9234984
  • 财政年份:
    2017
  • 资助金额:
    $ 29.8万
  • 项目类别:
Antivascular ultrasound therapy of primary liver neoplasia
原发性肝肿瘤的超声抗血管治疗
  • 批准号:
    10063483
  • 财政年份:
    2017
  • 资助金额:
    $ 29.8万
  • 项目类别:
Tunable microbubbles for antivascular ultrasound
用于抗血管超声的可调微泡
  • 批准号:
    9157676
  • 财政年份:
    2016
  • 资助金额:
    $ 29.8万
  • 项目类别:
Tunable microbubbles for antivascular ultrasound
用于抗血管超声的可调微泡
  • 批准号:
    9767166
  • 财政年份:
    2016
  • 资助金额:
    $ 29.8万
  • 项目类别:
Integrated photoacoustic and ultrasound imaging with the Vevo LAZR
使用 Vevo LAZR 集成光声和超声成像
  • 批准号:
    8640490
  • 财政年份:
    2014
  • 资助金额:
    $ 29.8万
  • 项目类别:
Quantitative diagnosis of breast cancer with ultrasound
乳腺癌的超声定量诊断
  • 批准号:
    7581824
  • 财政年份:
    2008
  • 资助金额:
    $ 29.8万
  • 项目类别:
Quantitative diagnosis of breast cancer with ultrasound
乳腺癌的超声定量诊断
  • 批准号:
    8196858
  • 财政年份:
    2008
  • 资助金额:
    $ 29.8万
  • 项目类别:
Quantitative diagnosis of breast cancer with ultrasound
乳腺癌的超声定量诊断
  • 批准号:
    7742149
  • 财政年份:
    2008
  • 资助金额:
    $ 29.8万
  • 项目类别:
Quantitative diagnosis of breast cancer with ultrasound
乳腺癌的超声定量诊断
  • 批准号:
    7995228
  • 财政年份:
    2008
  • 资助金额:
    $ 29.8万
  • 项目类别:
Flow-mediated dilation by ultrasound imaging
通过超声成像进行血流介导的扩张
  • 批准号:
    7140252
  • 财政年份:
    2005
  • 资助金额:
    $ 29.8万
  • 项目类别:

相似国自然基金

层出镰刀菌氮代谢调控因子AreA 介导伏马菌素 FB1 生物合成的作用机理
  • 批准号:
    2021JJ40433
  • 批准年份:
    2021
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
寄主诱导梢腐病菌AreA和CYP51基因沉默增强甘蔗抗病性机制解析
  • 批准号:
    32001603
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
AREA国际经济模型的移植.改进和应用
  • 批准号:
    18870435
  • 批准年份:
    1988
  • 资助金额:
    2.0 万元
  • 项目类别:
    面上项目

相似海外基金

Onboarding Rural Area Mathematics and Physical Science Scholars
农村地区数学和物理科学学者的入职
  • 批准号:
    2322614
  • 财政年份:
    2024
  • 资助金额:
    $ 29.8万
  • 项目类别:
    Standard Grant
TRACK-UK: Synthesized Census and Small Area Statistics for Transport and Energy
TRACK-UK:交通和能源综合人口普查和小区域统计
  • 批准号:
    ES/Z50290X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 29.8万
  • 项目类别:
    Research Grant
Wide-area low-cost sustainable ocean temperature and velocity structure extraction using distributed fibre optic sensing within legacy seafloor cables
使用传统海底电缆中的分布式光纤传感进行广域低成本可持续海洋温度和速度结构提取
  • 批准号:
    NE/Y003365/1
  • 财政年份:
    2024
  • 资助金额:
    $ 29.8万
  • 项目类别:
    Research Grant
Point-scanning confocal with area detector
点扫描共焦与区域检测器
  • 批准号:
    534092360
  • 财政年份:
    2024
  • 资助金额:
    $ 29.8万
  • 项目类别:
    Major Research Instrumentation
Collaborative Research: Scalable Manufacturing of Large-Area Thin Films of Metal-Organic Frameworks for Separations Applications
合作研究:用于分离应用的大面积金属有机框架薄膜的可扩展制造
  • 批准号:
    2326714
  • 财政年份:
    2024
  • 资助金额:
    $ 29.8万
  • 项目类别:
    Standard Grant
Collaborative Research: Scalable Manufacturing of Large-Area Thin Films of Metal-Organic Frameworks for Separations Applications
合作研究:用于分离应用的大面积金属有机框架薄膜的可扩展制造
  • 批准号:
    2326713
  • 财政年份:
    2024
  • 资助金额:
    $ 29.8万
  • 项目类别:
    Standard Grant
Unlicensed Low-Power Wide Area Networks for Location-based Services
用于基于位置的服务的免许可低功耗广域网
  • 批准号:
    24K20765
  • 财政年份:
    2024
  • 资助金额:
    $ 29.8万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
  • 批准号:
    2427233
  • 财政年份:
    2024
  • 资助金额:
    $ 29.8万
  • 项目类别:
    Standard Grant
Postdoctoral Fellowship: OPP-PRF: Tracking Long-Term Changes in Lake Area across the Arctic
博士后奖学金:OPP-PRF:追踪北极地区湖泊面积的长期变化
  • 批准号:
    2317873
  • 财政年份:
    2024
  • 资助金额:
    $ 29.8万
  • 项目类别:
    Standard Grant
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
  • 批准号:
    2427232
  • 财政年份:
    2024
  • 资助金额:
    $ 29.8万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了