Single Molecule Optically Resonant NanoTweezers for the study of Intracellular Me
用于细胞内 Me 研究的单分子光学共振纳米镊子
基本信息
- 批准号:8419345
- 负责人:
- 金额:$ 27.65万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-01-01 至 2016-12-31
- 项目状态:已结题
- 来源:
- 关键词:AffectBindingBiological AssayBiological AvailabilityCellsComplexCopperDestinationsDevelopmentDiseaseEnergy TransferEnvironmentEnzymesFamilial Amyotrophic Lateral SclerosisGoalsGrantHepatolenticular DegenerationImmobilizationIndividualIonsJointsKnowledgeLeadMediatingMenkes Kinky Hair SyndromeMetabolismMetalsMethodsMethylmalonyl-CoA MutaseMolecular ChaperonesNutrientOpticsPathologyPathway interactionsPhasePhysicsPhysiologicalPositioning AttributeProcessProtein DynamicsProteinsProtocols documentationRadialReactionSeriesSolutionsSpeedSystemTechniquesTechnologyTimeToxic effectUniversitiesVitamin B 12Wilson disease proteinWorkbasecobamamidecofactorinterestlaser tweezermacromoleculemeetingsnanometernanovesiclenovel strategiesparticlephotonicsprogramsprotein complexprotein protein interactionpublic health relevanceresearch studysingle moleculesmall moleculesuccesstooltrafficking
项目摘要
DESCRIPTION (provided by applicant): In this work we propose a joint project between the Erickson and Chen labs at Cornell University to develop a new approach to study the weak protein-protein interactions that govern intracellular metal and metal co-factor transport at the single molecule level. The approach involves the use of "Optically Resonant NanoTweezers" which we demonstrated during preceding exploratory R21 grant are capable of trapping proteins as small as a few nanometers, breaking through a long established barrier in optical physics. In addition to developing comprehensive information on the protein interaction dynamics for copper ion and vitamin B12 trafficking, through this program we will develop two general NanoTweezer based protocols for a quantitative single molecule florescence quenching assay (smFQ) and a single molecule florescence resonant energy transfer assay (smFRET) that can be applied to numerous other biophysical problems. Safe trafficking of metal ions and metal-containing cofactors inside cells to avoid toxicity is mediated by metallochaperones which deliver these reactive species to their target destinations while protecting them from adventitious
reactions. Abnormal function of this transport pathway can lead to diseases such as Wilson disease, Menkes disease, and familial amyotrophic lateral sclerosis. Despite its importance, very limited quantitative information is available on the biophysical mechanisms that enable this safe transfer or cause it to break down. A major difficulty in obtaining this information is the lak of a single molecule analysis tool which can simultaneously: (1) capture and suspend small molecules in free solution for an indefinite period time (2) effectively "concentrate" the set of molecules of interest to a point where weak protein-protein interactions can be studied and (3) allow rapid modulation of the external environmental conditions. One potential method by which the above goals could be achieved is through the use of optical tweezers. Fundamentally however, existing optical confinement techniques are limited by diffraction which places a lower bound on the size of dielectric target which can be trapped to about 100nm. With the optically resonant nanotweezer technology we have shown that this force can be enhanced 1000's of times so as to trap proteins (including the Wilson disease proteins used here) as small as a few nanometers. In this proposal, we show how we can adapt this technology to (1) non-invasively capture and suspend individual macromolecules in free solution (2) guide additional molecules to the capture region so that interactions can be observed and (3) maintain captured particles in position while the suspending solution is changed. When applied to intracellular metal transport these capabilities can speed up the process for discovering how metalochaperones respond to different environmental conditions and ultimately what leads to the pathologies listed above.
描述(由申请人提供):在这项工作中,我们提出了一个联合项目之间的埃里克森和陈实验室在康奈尔大学开发一种新的方法来研究弱蛋白质-蛋白质相互作用,管理细胞内的金属和金属辅因子运输在单分子水平。该方法涉及使用“光学共振纳米镊子”,我们在之前的探索性R21资助中证明,该镊子能够捕获小至几纳米的蛋白质,突破光学物理学中长期存在的障碍。除了开发铜离子和维生素B12贩运的蛋白质相互作用动力学的全面信息,通过该计划,我们将开发两个通用的基于Nanotweezer的定量单分子荧光猝灭测定(smFQ)和单分子荧光共振能量转移测定(smFRET),可应用于许多其他生物物理问题的协议。金属分子伴侣介导金属离子和含金属辅因子在细胞内的安全运输以避免毒性,金属分子伴侣将这些反应性物质递送到它们的靶目的地,同时保护它们免受外源性毒性。
反应.这种转运途径的功能异常可导致疾病,如威尔逊病、门克斯病和家族性肌萎缩侧索硬化症。尽管其重要性,但关于使这种安全转移得以实现或导致其分解的生物物理机制的定量信息非常有限。获得该信息的主要困难是缺乏单分子分析工具,其可以同时:(1)捕获小分子并使其在游离溶液中悬浮不确定的时间段;(2)有效地将感兴趣的分子组“浓缩”到可以研究弱蛋白质-蛋白质相互作用的点;以及(3)允许快速调节外部环境条件。可以实现上述目标的一种潜在方法是通过使用光学镊子。然而,从根本上说,现有的光学限制技术受到衍射的限制,衍射对可以被捕获到约100 nm的电介质目标的尺寸设置了下限。利用光学共振纳米镊子技术,我们已经证明这种力可以增强1000倍,以便捕获小到几纳米的蛋白质(包括这里使用的威尔逊病蛋白质)。在这个提议中,我们展示了我们如何适应这种技术(1)非侵入性地捕获和悬浮游离溶液中的单个大分子(2)将其他分子引导到捕获区域,以便可以观察到相互作用,以及(3)在悬浮溶液改变时保持捕获的颗粒就位。当应用于细胞内金属转运时,这些能力可以加快发现metalochaperones如何响应不同环境条件以及最终导致上述病理的过程。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(1)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Carl Erickson其他文献
David Carl Erickson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David Carl Erickson', 18)}}的其他基金
Point of Care Technologies for Nutrition, Infection, and Cancer for Global Health (PORTENT)
全球健康营养、感染和癌症护理点技术 (PORTENT)
- 批准号:
10714506 - 财政年份:2023
- 资助金额:
$ 27.65万 - 项目类别:
Point of Care Technologies for Nutrition, Infection, and Cancer for Global Health (PORTENT)
全球健康营养、感染和癌症护理点技术 (PORTENT)
- 批准号:
10714507 - 财政年份:2023
- 资助金额:
$ 27.65万 - 项目类别:
Artificial Intelligence and Precision Nutrition Training Program
人工智能与精准营养培训项目
- 批准号:
10752485 - 财政年份:2023
- 资助金额:
$ 27.65万 - 项目类别:
Paper-COVID - Platform for High-throughput SARS-CoV-2 Screening and Contact Tracing
Paper-COVID - 高通量 SARS-CoV-2 筛查和接触者追踪平台
- 批准号:
10196383 - 财政年份:2021
- 资助金额:
$ 27.65万 - 项目类别:
Development of a Point of Care Multiplexed Diagnostic Platform to Target Anemia and Micronutrient Deficiencies
开发针对贫血和微量营养素缺乏症的护理多重诊断平台
- 批准号:
9542788 - 财政年份:2017
- 资助金额:
$ 27.65万 - 项目类别:
Early Stage Diagnosis of Kaposi's Sarcoma in Limited Resource Settings using KS-Detect
使用 KS-Detect 在有限资源环境下对卡波西肉瘤进行早期诊断
- 批准号:
9334145 - 财政年份:2016
- 资助金额:
$ 27.65万 - 项目类别:
FeverPhone: Point of Care Diagnosis of Acute Febrile Illness using a Mobile Device
FeverPhone:使用移动设备对急性发热性疾病进行护理点诊断
- 批准号:
9008392 - 财政年份:2016
- 资助金额:
$ 27.65万 - 项目类别:
Early Stage Diagnosis of Kaposi's Sarcoma in Limited Resource Settings using KS-Detect
使用 KS-Detect 在有限资源环境中对卡波西肉瘤进行早期诊断
- 批准号:
9031275 - 财政年份:2016
- 资助金额:
$ 27.65万 - 项目类别:
Early Stage Diagnosis of Kaposi's Sarcoma in Limited Resource Settings using KS-Detect
使用 KS-Detect 在有限资源环境下对卡波西肉瘤进行早期诊断
- 批准号:
10018466 - 财政年份:2016
- 资助金额:
$ 27.65万 - 项目类别:
相似国自然基金
帽结合蛋白(cap binding protein)调控乙烯信号转导的分子机制
- 批准号:32170319
- 批准年份:2021
- 资助金额:58.00 万元
- 项目类别:面上项目
帽结合蛋白(cap binding protein)调控乙烯信号转导的分子机制
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:
ID1 (Inhibitor of DNA binding 1) 在口蹄疫病毒感染中作用机制的研究
- 批准号:31672538
- 批准年份:2016
- 资助金额:62.0 万元
- 项目类别:面上项目
番茄EIN3-binding F-box蛋白2超表达诱导单性结实和果实成熟异常的机制研究
- 批准号:31372080
- 批准年份:2013
- 资助金额:80.0 万元
- 项目类别:面上项目
P53 binding protein 1 调控乳腺癌进展转移及化疗敏感性的机制研究
- 批准号:81172529
- 批准年份:2011
- 资助金额:58.0 万元
- 项目类别:面上项目
DBP(Vitamin D Binding Protein)在多发性硬化中的作用和相关机制的蛋白质组学研究
- 批准号:81070952
- 批准年份:2010
- 资助金额:35.0 万元
- 项目类别:面上项目
研究EB1(End-Binding protein 1)的癌基因特性及作用机制
- 批准号:30672361
- 批准年份:2006
- 资助金额:24.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: NSF-BSF: How cell adhesion molecules control neuronal circuit wiring: Binding affinities, binding availability and sub-cellular localization
合作研究:NSF-BSF:细胞粘附分子如何控制神经元电路布线:结合亲和力、结合可用性和亚细胞定位
- 批准号:
2321481 - 财政年份:2024
- 资助金额:
$ 27.65万 - 项目类别:
Continuing Grant
Collaborative Research: NSF-BSF: How cell adhesion molecules control neuronal circuit wiring: Binding affinities, binding availability and sub-cellular localization
合作研究:NSF-BSF:细胞粘附分子如何控制神经元电路布线:结合亲和力、结合可用性和亚细胞定位
- 批准号:
2321480 - 财政年份:2024
- 资助金额:
$ 27.65万 - 项目类别:
Continuing Grant
Postdoctoral Fellowship: OPP-PRF: Understanding the Role of Specific Iron-binding Organic Ligands in Governing Iron Biogeochemistry in the Southern Ocean
博士后奖学金:OPP-PRF:了解特定铁结合有机配体在控制南大洋铁生物地球化学中的作用
- 批准号:
2317664 - 财政年份:2024
- 资助金额:
$ 27.65万 - 项目类别:
Standard Grant
Conformations of musk odorants and their binding to human musk receptors
麝香气味剂的构象及其与人类麝香受体的结合
- 批准号:
EP/X039420/1 - 财政年份:2024
- 资助金额:
$ 27.65万 - 项目类别:
Research Grant
NPBactID - Differential binding of peptoid functionalized nanoparticles to bacteria for identifying specific strains
NPBactID - 类肽功能化纳米粒子与细菌的差异结合,用于识别特定菌株
- 批准号:
EP/Y029542/1 - 财政年份:2024
- 资助金额:
$ 27.65万 - 项目类别:
Fellowship
Alkane transformations through binding to metals
通过与金属结合进行烷烃转化
- 批准号:
DP240103289 - 财政年份:2024
- 资助金额:
$ 27.65万 - 项目类别:
Discovery Projects
I-Corps: Translation Potential of Real-time, Ultrasensitive Electrical Transduction of Biological Binding Events for Pathogen and Disease Detection
I-Corps:生物结合事件的实时、超灵敏电转导在病原体和疾病检测中的转化潜力
- 批准号:
2419915 - 财政年份:2024
- 资助金额:
$ 27.65万 - 项目类别:
Standard Grant
The roles of a universally conserved DNA-and RNA-binding domain in controlling MRSA virulence and antibiotic resistance
普遍保守的 DNA 和 RNA 结合域在控制 MRSA 毒力和抗生素耐药性中的作用
- 批准号:
MR/Y013131/1 - 财政年份:2024
- 资助金额:
$ 27.65万 - 项目类别:
Research Grant
CRII: OAC: Development of a modular framework for the modeling of peptide and protein binding to membranes
CRII:OAC:开发用于模拟肽和蛋白质与膜结合的模块化框架
- 批准号:
2347997 - 财政年份:2024
- 资助金额:
$ 27.65万 - 项目类别:
Standard Grant
How lipid binding proteins shape the activity of nuclear hormone receptors
脂质结合蛋白如何影响核激素受体的活性
- 批准号:
DP240103141 - 财政年份:2024
- 资助金额:
$ 27.65万 - 项目类别:
Discovery Projects