Value of Personalized Risk Information
个性化风险信息的价值
基本信息
- 批准号:8628511
- 负责人:
- 金额:$ 46.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-09-30 至 2018-08-31
- 项目状态:已结题
- 来源:
- 关键词:AcuteAddressBase RatiosBiological MarkersCalibrationCaringChronicClinicalClinical TrialsCost Effectiveness AnalysisCosts and BenefitsDecision MakingDiagnosticDiscriminationFutureGenomicsHealthHealth BenefitHealthcareHeterogeneityImageIncentivesIndividualInterventionLaboratoriesLiteratureMeasuresMedicalMedicineMethodsModelingOutcomePatientsPopulationPopulation StudyPrevalenceProbabilityRelative (related person)ResearchResourcesRiskRisk EstimateRisk FactorsRisk MarkerRisk ReductionSimulateStratificationTestingTherapeuticTranslationsWorkbaseclinical careclinical decision-makingclinical practiceclinical riskcostcost effectivecost effectivenesseconomic impacthealth economicsheuristicsimprovedindexingnovelnovel markerpolicy implicationpreferenceprogramspublic health relevanceresearch clinical testingscreeningtool
项目摘要
Better information about the benefits of interventions in individuals has enormous potential to improve clinical
decision making. Yet cost effectiveness analyses (CEA) are almost always based on average incremental cost
and average incremental benefits found in groups. Since health care resources are allocated by decisions
made by and for individual patients, use of average cost effectiveness (CE) ratios can be inappropriate and
misleading. Interventions that are cost effective on average may not be cost effective for many (even for most)
patients with the index condition and-conversely-interventions that are nominally cost-ineffective may be
highly worthwhile in some. Concerns about the inappropriateness of applying average population CE ratios
parallel concerns about what treatment is best for an individual patient based on summary results of clinical
trials. Our prior work using risk models has shown that substantial differences in baseline risk are ubiquitous
across individuals with the same index condition. This risk heterogeneity gives rise to substantial, and often
clinically meaningful, differences in therapeutic benefits--particularly when benefits are considered on the
absolute scale, the most relevant measure for clinical decision making and CEA. Clinical Prediction Models
(CPMs) can be used across research and practice domains to address this risk heterogeneity and are
abundant in the literature. Despite the important concerns about the use of average effects and average CE
ratios and the availability of CPMs, the potential health and economic impact of better individualization of risk
information on clinical decisions remains largely unexamined. Further, just as CEAs typically ignore the
potential for population risk stratification, traditional measures used to evaluate CPM and novel risk biomarkers
typically ignore the decisional context in which the predictions are applied, and focus instead on "utility-free"
measures of statistical accuracy. Not surprisingly, these measures often poorly anticipate the ultimate clinical
usefulness of the predictive information.
Thus, our specific aims are: Aim 1: To examine the expected value of a risk-based approach to
individualizing care and cost effectiveness across a broad range of medical interventions; Aim 2: To develop
and test appropriate methods to assess prediction models, and incremental improvements in risk prediction,
based on a decision analytic framework that estimates the health and economic impact of improved
individualized medical decision-making; Aim 3:
To explore the policy implications of using a risk-based
approach to individualize care by: (a) simulating the impact of incentive-based programs, and (b) engaging
stakeholders on real-world implementation.
This project will: 1) elucidate the overall value of targeting therapy
using a risk-based approach; 2) help us understand the circumstances in which such an approach might be
especially useful; 3) provide heuristics and tools to expedite the evaluation of CPMs and novel risk biomarkers;
and 4) help us understand how best to incentivize their translation into clinical practice.
关于个体干预益处的更好信息具有巨大的潜力,可以改善临床
决策。然而,成本效益分析(CEA)几乎总是基于平均增量成本
和群体中的平均增量效益。由于卫生保健资源是由决定分配的,
由个体患者或为个体患者制定,使用平均成本效益(CE)比率可能不合适,
误导平均而言具有成本效益的干预措施对许多人(甚至对大多数人)来说可能不具有成本效益
患有指标疾病的患者,以及相反,名义上成本效益不高的干预措施可能会
在某些方面非常有价值。对采用平均人口CE比率不适当的关切
基于临床总结结果,对个体患者最佳治疗的平行关注
审判我们先前使用风险模型的工作表明,基线风险的实质性差异是普遍存在的
在具有相同指数条件的个体之间。这种风险异质性导致了大量的,而且往往是
临床上有意义的,治疗益处的差异-特别是当益处被认为是在
绝对量表是临床决策和CEA最相关的指标。临床预测模型
(CPM)可以用于跨研究和实践领域,以解决这种风险异质性,
丰富的文学。尽管对平均效应和平均CE的使用有重要的关注,
比率和CPM的可用性,更好地个性化风险的潜在健康和经济影响
有关临床决策的信息基本上仍未得到审查。此外,正如CEA通常忽略
人群风险分层的可能性,用于评价CPM和新型风险生物标志物的传统指标
通常忽略应用预测的决策背景,而专注于“无效用”
统计准确性的衡量标准。毫不奇怪,这些措施往往很难预测最终的临床
预测信息的有用性。
因此,我们的具体目标是:目标1:研究基于风险的方法的预期价值,
在广泛的医疗干预措施中实现个性化护理和成本效益;目标2:
并测试适当的方法来评估预测模型,以及风险预测的增量改进,
基于一个决策分析框架,该框架估计改善的健康和经济影响,
个性化医疗决策;目标3:
探讨使用基于风险的
个性化护理的方法:(a)模拟基于激励的计划的影响,(B)参与
在现实世界中实施。
本课题将:1)阐明靶向治疗的整体价值
使用基于风险的方法; 2)帮助我们了解这种方法可能适用的情况
特别有用; 3)提供化学和工具以加速CPM和新风险生物标志物的评估;
以及4)帮助我们理解如何最好地激励它们转化为临床实践。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
DAVID M KENT其他文献
DAVID M KENT的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('DAVID M KENT', 18)}}的其他基金
Covert Cerebrovascular Disease Detected by Artificial Intelligence (C2D2AI): A Platform for Pragmatic Evidence Generation for Stroke and Dementia Prevention
人工智能检测隐性脑血管疾病(C2D2AI):中风和痴呆症预防的实用证据生成平台
- 批准号:
10591063 - 财政年份:2023
- 资助金额:
$ 46.6万 - 项目类别:
Enabling Comparative Effectiveness Research in Silent Brain Infarction Through Natural Language Processing and Big Data
通过自然语言处理和大数据实现无症状脑梗塞的比较有效性研究
- 批准号:
9365110 - 财政年份:2017
- 资助金额:
$ 46.6万 - 项目类别:
An Online Searchable Field Synopsis of Clinical Prediction Models in Cardiovascular Disease
心血管疾病临床预测模型的在线可搜索领域概要
- 批准号:
9072292 - 财政年份:2013
- 资助金额:
$ 46.6万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 46.6万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 46.6万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 46.6万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 46.6万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 46.6万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 46.6万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 46.6万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 46.6万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 46.6万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 46.6万 - 项目类别:
Research Grant