Covert Cerebrovascular Disease Detected by Artificial Intelligence (C2D2AI): A Platform for Pragmatic Evidence Generation for Stroke and Dementia Prevention
人工智能检测隐性脑血管疾病(C2D2AI):中风和痴呆症预防的实用证据生成平台
基本信息
- 批准号:10591063
- 负责人:
- 金额:$ 289.48万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-02-01 至 2026-01-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAgeAlgorithmsAlzheimer&aposs DiseaseAmerican Heart AssociationAmerican Stroke AssociationArticulationArtificial IntelligenceAttentionAwarenessBlood PlateletsBlood VesselsBrainBrain InfarctionCaliforniaCaringCerebrovascular DisordersClinicClinicalClinical TrialsCodeCognitiveCohort StudiesDementiaDevelopmentDiseaseElectronic Health RecordEnrollmentEnsureEventFoundationsFutureGenerationsGoalsGrantGuidelinesHeadHealthHumanICD-9ImageImpaired cognitionIncidenceIncidental DiscoveriesIncidental FindingsIndividualInfarctionIntegrated Health Care SystemsLocationMagnetic Resonance ImagingModificationMorbidity - disease rateMulti-Institutional Clinical TrialNatural Language ProcessingNeurologicPatient SelectionPatientsPopulationPopulation HeterogeneityPopulation ResearchPopulations at RiskPreventionPrevention ResearchPreventive treatmentPrimary PreventionPrognosisProtocols documentationProviderRandomizedReaderRecommendationRecording of previous eventsRecurrenceReportingResearchRiskRisk FactorsScanningSeverity of illnessStandardizationStrokeStroke preventionStructureSubgroupSystemTimeTransient Ischemic AttackTranslatingVascular DementiaWhite Matter DiseaseWorkX-Ray Computed Tomographyage relatedcardiovascular risk factorclinical careclinical practicecohortcomparative effectiveness studydementia riskdesigndisorder riskepidemiology studyhigh riskhigh risk populationimprovedindexinginsightmixed dementiamodels and simulationneuroimagingnoveloptimal treatmentspopulation basedpreventprevention clinical trialprognosticprospectiverecruitroutine carescreeningstroke risktreatment effecttreatment strategyvascular risk factor
项目摘要
Project Summary
It is a common clinical occurrence that neuroimaging scans obtained in the course of routine clinical care
discover covert cerebrovascular disease (CCD), comprising covert brain infarction (CBI) and white matter
disease (WMD), in patients with no history of stroke or transient ischemic attack. Indeed, epidemiologic studies
indicate that covert CBI are far more common than clinically-evident strokes and these imaging findings are
strong, independent risk factors for future stroke and dementia. However, there are no proven preventive
treatments or guidelines for initiating risk factor-modifying therapy. While there is strong evidence that
antiplatelet therapy and statin therapy are effective in preventing recurrent stroke in patients with prior stroke, it
is unclear the degree to which these results apply to patients with CCD. Additionally, patients and providers are
rarely aware of these findings, even when they are detected. As part of our previous grant (R01-NS102233),
we developed a natural language processing (NLP) algorithm to identify incidentally discovered (id-) CCD from
neuroimaging reports, which we ported into a large integrated healthcare system. We identified a cohort of
almost a quarter million patients over age 50 who received either a head CT or MRI and were stroke- and
dementia- free at the time of the index scan. Key findings of our analyses include: NLP can identify id-CBI and
id-WBD from neuroimage reports as well as human readers; that id-CCD is present in about one-third of these
scans in an age- and vascular risk factor dependent manner; that id-CCD increases the risk of future stroke
and future dementia by approximately 2- to 3-fold; that NLP is able to extract additional important prognostic
information on WMD severity from routinely obtained imaging reports; and finally, these patients are generally
not given risk factor modifying treatment following the discovery of id-CCD. Given the difficulty of recruiting this
at risk population, we now propose to leverage this NLP system as a platform to plan and conduct prospective
randomized comparative effectiveness studies to identify optimal treatment strategies for id-CCD. Thus, our
aims are: Aim 1: To inform the enrollment criteria of prevention clinical trials and ensure consistency of
findings, we will expand the cohort to Kaiser Permanente Northern California and further characterize patients
with id-CCD regarding their future stroke and dementia risk. Aim 2: To determine optimal treatment algorithms,
we will leverage established simulation models to estimate the treatment effects of different risk factor
modification algorithms in patients with id-CCD on future stroke and dementia. Aim 3: To determine optimal
recruitment strategies in demographically diverse populations, we will examine the feasibility of recruiting this
novel population based on NLP-identified findings both prospectively (i.e. concurrent with clinical identification)
and retrospectively (as identified from pre-existing scans). Aim 4: Based on the above findings we will plan a
multicenter clinical trial for the prevention of stroke and dementia in this population with CCD.
项目概要
在常规临床护理过程中获得的神经影像扫描是一种常见的临床现象
发现隐性脑血管疾病 (CCD),包括隐性脑梗死 (CBI) 和白质
疾病(WMD),发生在没有中风或短暂性脑缺血发作病史的患者中。事实上,流行病学研究
表明隐性 CBI 比临床明显的中风更为常见,这些影像学发现
未来中风和痴呆的强大、独立的危险因素。然而,目前还没有经过证实的预防措施
开始危险因素改变治疗的治疗或指南。虽然有强有力的证据表明
抗血小板治疗和他汀类药物治疗可有效预防既往卒中患者的卒中复发,
尚不清楚这些结果在多大程度上适用于 CCD 患者。此外,患者和提供者
很少有人意识到这些发现,即使它们被发现了。作为我们之前拨款 (R01-NS102233) 的一部分,
我们开发了一种自然语言处理 (NLP) 算法来识别偶然发现的 (id-) CCD
神经影像报告,我们将其移植到大型综合医疗保健系统中。我们确定了一组
近 25 万 50 岁以上的患者接受了头部 CT 或 MRI 检查后患有中风和
索引扫描时无痴呆。我们分析的主要结果包括: NLP 可以识别 id-CBI 和
来自神经影像报告和人类读者的 id-WBD; id-CCD 存在于大约三分之一的产品中
以年龄和血管危险因素相关的方式进行扫描; id-CCD 会增加未来中风的风险
以及未来痴呆症的发生率大约是原来的 2 到 3 倍; NLP 能够提取额外的重要预后信息
从常规获得的成像报告中获得有关大规模杀伤性武器严重程度的信息;最后,这些患者通常
发现 id-CCD 后未给予危险因素改变治疗。鉴于招聘此人的难度
针对高危人群,我们现在建议利用该 NLP 系统作为平台来规划和开展前瞻性研究
随机比较有效性研究以确定 id-CCD 的最佳治疗策略。因此,我们的
目标是: 目标 1:告知预防性临床试验的入组标准并确保试验的一致性
研究结果表明,我们将把队列扩大到北加州凯撒医疗机构,并进一步描述患者的特征
与 id-CCD 了解他们未来中风和痴呆的风险。目标 2:确定最佳治疗算法,
我们将利用已建立的模拟模型来估计不同危险因素的治疗效果
id-CCD 患者未来中风和痴呆症的修改算法。目标 3:确定最优
在人口结构多样化的人群中采取招募策略,我们将研究招募这种人员的可行性
基于 NLP 前瞻性发现的新人群(即与临床鉴定同时进行)
以及回顾性(根据预先存在的扫描确定)。目标 4:根据上述发现,我们将计划
预防 CCD 人群中风和痴呆的多中心临床试验。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
DAVID M KENT其他文献
DAVID M KENT的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('DAVID M KENT', 18)}}的其他基金
CTSA Predoctoral T32 at Tufts University
塔夫茨大学 CTSA 博士前 T32
- 批准号:
10621977 - 财政年份:2023
- 资助金额:
$ 289.48万 - 项目类别:
CTSA Postdoctoral T32 at Tufts University
塔夫茨大学 CTSA 博士后 T32
- 批准号:
10621976 - 财政年份:2023
- 资助金额:
$ 289.48万 - 项目类别:
Enabling Comparative Effectiveness Research in Silent Brain Infarction Through Natural Language Processing and Big Data
通过自然语言处理和大数据实现无症状脑梗塞的比较有效性研究
- 批准号:
9365110 - 财政年份:2017
- 资助金额:
$ 289.48万 - 项目类别:
An Online Searchable Field Synopsis of Clinical Prediction Models in Cardiovascular Disease
心血管疾病临床预测模型的在线可搜索领域概要
- 批准号:
9072292 - 财政年份:2013
- 资助金额:
$ 289.48万 - 项目类别:
相似国自然基金
靶向递送一氧化碳调控AGE-RAGE级联反应促进糖尿病创面愈合研究
- 批准号:JCZRQN202500010
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
对香豆酸抑制AGE-RAGE-Ang-1通路改善海马血管生成障碍发挥抗阿尔兹海默病作用
- 批准号:2025JJ70209
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
AGE-RAGE通路调控慢性胰腺炎纤维化进程的作用及分子机制
- 批准号:
- 批准年份:2024
- 资助金额:0 万元
- 项目类别:面上项目
甜茶抑制AGE-RAGE通路增强突触可塑性改善小鼠抑郁样行为
- 批准号:2023JJ50274
- 批准年份:2023
- 资助金额:0.0 万元
- 项目类别:省市级项目
蒙药额尔敦-乌日勒基础方调控AGE-RAGE信号通路改善术后认知功能障碍研究
- 批准号:
- 批准年份:2022
- 资助金额:33 万元
- 项目类别:地区科学基金项目
补肾健脾祛瘀方调控AGE/RAGE信号通路在再生障碍性贫血骨髓间充质干细胞功能受损的作用与机制研究
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
LncRNA GAS5在2型糖尿病动脉粥样硬化中对AGE-RAGE 信号通路上相关基因的调控作用及机制研究
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
围绕GLP1-Arginine-AGE/RAGE轴构建探针组学方法探索大柴胡汤异病同治的效应机制
- 批准号:81973577
- 批准年份:2019
- 资助金额:55.0 万元
- 项目类别:面上项目
AGE/RAGE通路microRNA编码基因多态性与2型糖尿病并发冠心病的关联研究
- 批准号:81602908
- 批准年份:2016
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
高血糖激活滑膜AGE-RAGE-PKC轴致骨关节炎易感的机制研究
- 批准号:81501928
- 批准年份:2015
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
相似海外基金
PROTEMO: Emotional Dynamics Of Protective Policies In An Age Of Insecurity
PROTEMO:不安全时代保护政策的情绪动态
- 批准号:
10108433 - 财政年份:2024
- 资助金额:
$ 289.48万 - 项目类别:
EU-Funded
The role of dietary and blood proteins in the prevention and development of major age-related diseases
膳食和血液蛋白在预防和发展主要与年龄相关的疾病中的作用
- 批准号:
MR/X032809/1 - 财政年份:2024
- 资助金额:
$ 289.48万 - 项目类别:
Fellowship
Atomic Anxiety in the New Nuclear Age: How Can Arms Control and Disarmament Reduce the Risk of Nuclear War?
新核时代的原子焦虑:军控与裁军如何降低核战争风险?
- 批准号:
MR/X034690/1 - 财政年份:2024
- 资助金额:
$ 289.48万 - 项目类别:
Fellowship
Collaborative Research: Resolving the LGM ventilation age conundrum: New radiocarbon records from high sedimentation rate sites in the deep western Pacific
合作研究:解决LGM通风年龄难题:西太平洋深部高沉降率地点的新放射性碳记录
- 批准号:
2341426 - 财政年份:2024
- 资助金额:
$ 289.48万 - 项目类别:
Continuing Grant
Collaborative Research: Resolving the LGM ventilation age conundrum: New radiocarbon records from high sedimentation rate sites in the deep western Pacific
合作研究:解决LGM通风年龄难题:西太平洋深部高沉降率地点的新放射性碳记录
- 批准号:
2341424 - 财政年份:2024
- 资助金额:
$ 289.48万 - 项目类别:
Continuing Grant
Doctoral Dissertation Research: Effects of age of acquisition in emerging sign languages
博士论文研究:新兴手语习得年龄的影响
- 批准号:
2335955 - 财政年份:2024
- 资助金额:
$ 289.48万 - 项目类别:
Standard Grant
The economics of (mis)information in the age of social media
社交媒体时代(错误)信息的经济学
- 批准号:
DP240103257 - 财政年份:2024
- 资助金额:
$ 289.48万 - 项目类别:
Discovery Projects
How age & sex impact the transcriptional control of mammalian muscle growth
你多大
- 批准号:
DP240100408 - 财政年份:2024
- 资助金额:
$ 289.48万 - 项目类别:
Discovery Projects
Supporting teachers and teaching in the age of Artificial Intelligence
支持人工智能时代的教师和教学
- 批准号:
DP240100111 - 财政年份:2024
- 资助金额:
$ 289.48万 - 项目类别:
Discovery Projects
Enhancing Wahkohtowin (Kinship beyond the immediate family) Community-based models of care to reach and support Indigenous and racialized women of reproductive age and pregnant women in Canada for the prevention of congenital syphilis
加强 Wahkohtowin(直系亲属以外的亲属关系)以社区为基础的护理模式,以接触和支持加拿大的土著和种族育龄妇女以及孕妇,预防先天梅毒
- 批准号:
502786 - 财政年份:2024
- 资助金额:
$ 289.48万 - 项目类别:
Directed Grant