An Online Searchable Field Synopsis of Clinical Prediction Models in Cardiovascular Disease
心血管疾病临床预测模型的在线可搜索领域概要
基本信息
- 批准号:9072292
- 负责人:
- 金额:$ 16.47万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-09-30 至 2017-08-31
- 项目状态:已结题
- 来源:
- 关键词:AcuteAddressBase RatiosBiological MarkersCalibrationCardiovascular DiseasesCaringChronicClinicalClinical TrialsCost Effectiveness AnalysisCosts and BenefitsDecision MakingDiagnosticDiscriminationFutureGenomicsHealthHealth BenefitHealthcareHeterogeneityIncentivesIndividualInterventionLaboratoriesLiteratureMeasuresMedicalMethodsModelingOutcomePatient riskPatientsPopulationPrevalenceProbabilityResearchResourcesRiskRisk EstimateRisk FactorsRisk MarkerRisk ReductionStratificationTestingTherapeuticTranslationsWorkbaseclinical careclinical decision-makingclinical practiceclinical riskcostcost effectivecost effectivenesseconomic impacthealth economicsheuristicsimaging biomarkerimprovedindexingindividual patientnovelnovel markerpersonalized carepersonalized medicinepersonalized screeningpolicy implicationpreferenceprogramsresearch clinical testingstudy populationtargeted treatmenttool
项目摘要
DESCRIPTION (provided by applicant): Better information about the benefits of interventions in individuals has enormous potential to improve clinical decision making. Yet cost effectiveness analyses (CEA) are almost always based on average incremental cost and average incremental benefits found in groups. Since health care resources are allocated by decisions made by and for individual patients, use of average cost effectiveness (CE) ratios can be inappropriate and misleading. Interventions that are cost effective on average may not be cost effective for many (even for most) patients with the index condition and-conversely-interventions that are nominally cost-ineffective may be highly worthwhile in some. Concerns about the inappropriateness of applying average population CE ratios parallel concerns about what treatment is best for an individual patient based on summary results of clinical trials. Our prior work using risk models has shown that substantial differences in baseline risk are ubiquitous across individuals with the same index condition. This risk heterogeneity gives rise to substantial, and often clinically meaningful, differences in therapeutic benefits--particularly when benefits are considered on the absolute scale, the most relevant measure for clinical decision making and CEA. Clinical Prediction Models (CPMs) can be used across research and practice domains to address this risk heterogeneity and are abundant in the literature. Despite the important concerns about the use of average effects and average CE ratios and the availability of CPMs, the potential health and economic impact of better individualization of risk information on clinical decisions remains largely unexamined. Further, just as CEAs typically ignore the potential for population risk stratification, traditional measures used to evaluate CPM and novel risk biomarkers typically ignore the decisional context in which the predictions are applied, and focus instead on "utility-free" measures of statistical accuracy. Not surprisingly, these measures often poorly anticipate the ultimate clinical usefulness of the predictive information. Thus, our specific aims are: Aim 1 To examine the expected value of a risk-based approach to individualizing care and cost effectiveness across a broad range of medical interventions; Aim 2: To develop and test appropriate methods to assess prediction models, and incremental improvements in risk prediction, based on a decision analytic framework that estimates the health and economic impact of improved individualized medical decision-making; Aim 3: To explore the policy implications of using a risk-based approach to individualize care by: (a) simulating the impact of incentive-based programs, and (b) engaging stakeholders on real-world implementation. This project will: 1) elucidate the overall value of targeting therapy using a risk-based approach; 2) help us understand the circumstances in which such an approach might be especially useful; 3) provide heuristics and tools to expedite the evaluation of CPMs and novel risk biomarkers; and 4) help us understand how best to incentivize their translation into clinical practice.
描述(由申请人提供):有关个体干预措施益处的更好信息对于改善临床决策具有巨大潜力。然而,成本效益分析(CEA)几乎总是基于群体中的平均增量成本和平均增量收益。由于医疗保健资源是根据患者个人的决定进行分配的,因此平均成本效益 (CE) 比率的使用可能不恰当且具有误导性。平均而言,具有成本效益的干预措施对于许多(甚至对于大多数)患有指标病症的患者来说可能并不具有成本效益,相反,名义上成本效益较低的干预措施对于某些患者来说可能非常值得。对应用平均群体 CE 比率不恰当的担忧与基于临床试验总结结果的对个体患者最佳治疗的担忧并行。我们之前使用风险模型的工作表明,具有相同指数条件的个体之间普遍存在基线风险的显着差异。这种风险异质性导致治疗益处存在显着且通常具有临床意义的差异,尤其是在绝对范围(临床决策和 CEA 最相关的衡量标准)上考虑益处时。临床预测模型(CPM)可以跨研究和实践领域使用,以解决这种风险异质性,并且文献中有丰富的内容。尽管对平均效应和平均 CE 比率的使用以及 CPM 的可用性存在重要担忧,但临床决策中风险信息更好的个体化所带来的潜在健康和经济影响在很大程度上仍未得到检验。此外,正如 CEA 通常忽略人群风险分层的可能性一样,用于评估 CPM 的传统措施和新型风险生物标志物通常忽略应用预测的决策背景,而是关注统计准确性的“无效用”措施。毫不奇怪,这些措施通常很难预测预测信息的最终临床用途。 因此,我们的具体目标是: 目标 1 检查基于风险的个体化护理方法的预期价值以及广泛的医疗干预措施的成本效益;目标 2:开发和测试适当的方法来评估预测模型,并基于决策分析框架来逐步改进风险预测,该框架估计改进的个体化医疗决策对健康和经济的影响;目标 3:通过以下方式探索使用基于风险的方法进行个性化护理的政策影响:(a) 模拟基于激励的计划的影响,以及 (b) 让利益相关者参与现实世界的实施。该项目将:1)利用基于风险的方法阐明靶向治疗的总体价值; 2)帮助我们了解这种方法在什么情况下可能特别有用; 3)提供启发法和工具来加快CPM和新型风险生物标志物的评估; 4)帮助我们了解如何最好地激励他们将其转化为临床实践。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
DAVID M KENT其他文献
DAVID M KENT的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('DAVID M KENT', 18)}}的其他基金
Covert Cerebrovascular Disease Detected by Artificial Intelligence (C2D2AI): A Platform for Pragmatic Evidence Generation for Stroke and Dementia Prevention
人工智能检测隐性脑血管疾病(C2D2AI):中风和痴呆症预防的实用证据生成平台
- 批准号:
10591063 - 财政年份:2023
- 资助金额:
$ 16.47万 - 项目类别:
CTSA Postdoctoral T32 at Tufts University
塔夫茨大学 CTSA 博士后 T32
- 批准号:
10621976 - 财政年份:2023
- 资助金额:
$ 16.47万 - 项目类别:
Enabling Comparative Effectiveness Research in Silent Brain Infarction Through Natural Language Processing and Big Data
通过自然语言处理和大数据实现无症状脑梗塞的比较有效性研究
- 批准号:
9365110 - 财政年份:2017
- 资助金额:
$ 16.47万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 16.47万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 16.47万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 16.47万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 16.47万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 16.47万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 16.47万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 16.47万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 16.47万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 16.47万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 16.47万 - 项目类别:
Research Grant