Computation, Bioinformatics, and Statistics (CBIOS) Training Program

计算、生物信息学和统计学 (CBIOS) 培训计划

基本信息

  • 批准号:
    8551321
  • 负责人:
  • 金额:
    $ 8.07万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-07-01 至 2018-06-30
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Genomic data are transforming how scientists in medicine and basic science conduct research. The advancement of genome science requires a new generation of scientists with strong computational and statistical skills and the ability to effectively interact with experimentalists. The proposed Penn State Computation, Bioinformatics, and Statistics (CBIOS) Training Program will prepare a cadre of investigators to think innovatively and keep pace with the quickly evolving landscape of high throughput genomic technologies. The program faculty are interdisciplinary and highly collaborative, with expertise in computation, bioinformatics, statistics, functional, medical, and evolutionary genomics. Learning these discipline-crossing skills will make trainees competitive for future careers in emerging and rapidly advancing fields of comparative, systems, statistical and medical genomics. The educational objectives of the CBIOS program are to engender in the trainees the following: 1. A thorough understanding of hypothesis testing in the scientific process. 2. The ability to work from theory to data and back. 3. Fluency in the use of computational and statistical tools for high throughput data. 4. The ability to integrate and innovate computational and statistical analysis of high throughput data. 5. Excellence in cross-disciplinary scientific communication including ethical implications of computational and bioinformatics research. 6. The ability to lead cross-disciplinary research teams The CBIOS training program will accomplish these objectives through a set of existing core and elective courses along with a new practicum course, all of which are integrated with a journal club and seminar series. The program will enhance professional development through invited seminar speakers and retreats, and will specifically develop trainees' communication skills to enable dissemination of genomics research to a broad audience. Predoctoral trainees will be selected early in their graduate program for two years of intensive training. A total of 15 trainees (10 NIH and 5 PSU supported) will be trained during a five-year granting period. The faculty supporting this training program have a combined annual research funding base of $65 million direct costs, and thus offer a robust mentoring foundation for student research experience and opportunities.
描述(由申请人提供):基因组数据正在改变医学和基础科学科学家进行研究的方式。基因组科学的进步需要新一代科学家具有强大的计算和统计技能以及与实验学家有效互动的能力。拟议的宾夕法尼亚州立大学计算,生物信息学和统计学(CBIOS)培训计划将培养一批研究人员进行创新思考,并跟上高通量基因组技术快速发展的步伐。该计划的教师是跨学科和高度合作,在计算,生物信息学,统计学,功能,医学和进化基因组学的专业知识。学习这些跨学科的技能将使学员在比较,系统,统计和医学基因组学的新兴和快速发展领域的未来职业竞争力。CBIOS计划的教育目标是在受训人员中产生以下内容:1。深入了解科学过程中的假设检验。 2.从理论到数据再返回的能力。 3.熟练使用计算和统计工具获取高通量数据。4.整合和创新高通量数据的计算和统计分析的能力。5.卓越的跨学科科学交流,包括计算和生物信息学研究的伦理影响。 6.领导跨学科研究团队的能力CBIOS培训计划将通过一套现有的核心和选修课程沿着新的实习课程来实现这些目标,所有这些课程都与期刊俱乐部和研讨会系列相结合。该计划将通过邀请研讨会发言人和务虚会加强专业发展,并将专门培养学员的沟通技巧,使基因组学研究传播给广大受众。博士前学员将在他们的研究生课程的早期被选中进行为期两年的强化培训。在为期五年的赠款期内,将对总共15名受训人员(10名国家卫生研究所和5名支助股)进行培训。支持这一培训计划的教师每年的直接费用为6500万美元,因此为学生的研究经验和机会提供了强大的指导基础。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Debashis Ghosh其他文献

Debashis Ghosh的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Debashis Ghosh', 18)}}的其他基金

Addressing Sparsity in Metabolomics Data Analysis
解决代谢组学数据分析中的稀疏性
  • 批准号:
    10396831
  • 财政年份:
    2021
  • 资助金额:
    $ 8.07万
  • 项目类别:
Addressing Sparsity in Metabolomics Data Analysis
解决代谢组学数据分析中的稀疏性
  • 批准号:
    10007593
  • 财政年份:
    2018
  • 资助金额:
    $ 8.07万
  • 项目类别:
Addressing Sparsity in Metabolomics Data Analysis
解决代谢组学数据分析中的稀疏性
  • 批准号:
    10252042
  • 财政年份:
    2018
  • 资助金额:
    $ 8.07万
  • 项目类别:
Computation, Bioinformatics, and Statistics (CBIOS) Training Program
计算、生物信息学和统计学 (CBIOS) 培训计划
  • 批准号:
    8691906
  • 财政年份:
    2013
  • 资助金额:
    $ 8.07万
  • 项目类别:
Statistical Methods for Cancer Biomarkers
癌症生物标志物的统计方法
  • 批准号:
    9403697
  • 财政年份:
    2009
  • 资助金额:
    $ 8.07万
  • 项目类别:
Statistical Methods for Cancer Biomarkers
癌症生物标志物的统计方法
  • 批准号:
    8253824
  • 财政年份:
    2009
  • 资助金额:
    $ 8.07万
  • 项目类别:
Statistical Methods for Cancer Biomarkers
癌症生物标志物的统计方法
  • 批准号:
    8603224
  • 财政年份:
    2009
  • 资助金额:
    $ 8.07万
  • 项目类别:
Statistical Methods for Cancer Biomarkers
癌症生物标志物的统计方法
  • 批准号:
    8787990
  • 财政年份:
    2009
  • 资助金额:
    $ 8.07万
  • 项目类别:
Statistical Methods for Cancer Biomarkers
癌症生物标志物的统计方法
  • 批准号:
    10199945
  • 财政年份:
    2009
  • 资助金额:
    $ 8.07万
  • 项目类别:
Statistical Methods for Cancer Biomarkers
癌症生物标志物的统计方法
  • 批准号:
    9974486
  • 财政年份:
    2009
  • 资助金额:
    $ 8.07万
  • 项目类别:

相似海外基金

SBIR Phase I: Scalable, on-demand, research-based, help-seeking innovation for learners in virtual and recorded training programs
SBIR 第一阶段:通过虚拟和录制的培训项目为学习者提供可扩展、按需、基于研究、寻求帮助的创新
  • 批准号:
    2151406
  • 财政年份:
    2023
  • 资助金额:
    $ 8.07万
  • 项目类别:
    Standard Grant
Development and evaluation of training programs for students engaged in teaching assistants at universities
高校助教学生培养方案的制定与评估
  • 批准号:
    23K02511
  • 财政年份:
    2023
  • 资助金额:
    $ 8.07万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Education DCL: EAGER: Developing Sector-specific Cybersecurity Training Programs: What are the Benefits to Students and Employers?
教育 DCL:EAGER:制定针对特定行业的网络安全培训计划:对学生和雇主有什么好处?
  • 批准号:
    2335748
  • 财政年份:
    2023
  • 资助金额:
    $ 8.07万
  • 项目类别:
    Standard Grant
Development of Teacher Training Programs to Promote School Safety
制定教师培训计划以促进学校安全
  • 批准号:
    23K02056
  • 财政年份:
    2023
  • 资助金额:
    $ 8.07万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of Elementary Programming Education Practices and Construction of Training Programs to foster AI Literacy
开发基础编程教育实践并构建培训项目以培养人工智能素养
  • 批准号:
    22K02575
  • 财政年份:
    2022
  • 资助金额:
    $ 8.07万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
An Analysis of Japanese High School EFL Learner Interaction: Developing Meaningful Teacher Training Programs
日本高中 EFL 学习者互动分析:制定有意义的教师培训计划
  • 批准号:
    22K00755
  • 财政年份:
    2022
  • 资助金额:
    $ 8.07万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Program development and analysis of human resource training programs for highly specialized patient safety managers
高度专业化的患者安全管理人员人力资源培训计划的计划开发和分析
  • 批准号:
    22K10413
  • 财政年份:
    2022
  • 资助金额:
    $ 8.07万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Perceptions of English Dyslexia and its Formation Process in College English Teacher Training Programs
大学英语教师培训中对英语阅读障碍的认知及其形成过程
  • 批准号:
    21K00737
  • 财政年份:
    2021
  • 资助金额:
    $ 8.07万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Expanding program evaluation capacity and enhancing training programs through alumni perspectives
通过校友视角扩大项目评估能力并加强培训项目
  • 批准号:
    10592969
  • 财政年份:
    2021
  • 资助金额:
    $ 8.07万
  • 项目类别:
Developmental Characteristics and Extension of Training Programs in the Use of Deictic Verbs in the Mother Tongue of Children with Autism Spectrum Disorder
自闭症谱系障碍儿童母语指示动词使用的发展特点及拓展
  • 批准号:
    21K13627
  • 财政年份:
    2021
  • 资助金额:
    $ 8.07万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了