SLASH: SCALABLE LARGE ANALYTIC SEGMENTATION HYBRID
SLASH:可扩展的大型分析细分混合体
基本信息
- 批准号:8461069
- 负责人:
- 金额:$ 42.55万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-05-01 至 2015-04-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAdoptionAlgorithmsAreaAutomobile DrivingBiologicalCell membraneCell physiologyCellsCellular StructuresClassificationComplexComputer softwareComputersComputers and Advanced InstrumentationCouplesCytoskeletonDataData SetDatabasesDepositionDevicesDiseaseElectron MicroscopyElectronsFaceGenerationsGoalsGrowthHybridsImageImaging TechniquesIndividualInstitutesInternetLabelLaboratoriesMachine LearningManualsMethodsMicroscopicMitochondriaMolecularMolecular TargetNamesNervous System PhysiologyNervous system structureNeurofibrillary TanglesNeuronsNeuropilOnline SystemsOrganellesParticipantProcessResearchResearch PersonnelResolutionScanning Electron MicroscopyScientistServicesSolutionsStaining methodStainsStructureSubcellular structureSystemTechniquesThree-Dimensional ImagingTissuesTrainingUniversitiesUtahValidationWorkWorkloadbiological systemscellular imagingcomplex biological systemsdata miningdigital imagingelectron opticsflexibilityimage processingimprovedinsightinterestknowledge basenovelprototyperelating to nervous systemscientific computingtomographytoolweb interface
项目摘要
DESCRIPTION (provided by applicant): Advanced instrumentation and cellular imaging techniques using high-throughput 3D electron microscopy are driving a new revolution in the exploration of complex biological systems by providing near seamless views across multiple scales of resolution. These datasets provide the necessary breadth and depth to analyze multicellular, cellular, and subcelluar structure across large swathes of neural tissue. While these new imaging procedures are generating extremely large datasets of enormous value, the quantities are such that no single user or even laboratory team can possibly analyze the full content of their own imaging activities through traditional means. To address this challenge, we propose to further develop and refine a prototype hybrid system for high-throughput segmentation of large neuropil datasets that: 1) advances automatic algorithms for segmentation of cellular and sub-cellular structures using machine learning techniques; 2) couples these techniques to a scalable and flexible process or tool suite allowing multiple users to simultaneously review, edit and curate the results of these automatic approaches; and, 3) builds a knowledge base of training data guiding and improving automated processing. This system will allow project scientists to select areas of interest, execute automatic segmentation algorithms, and distribute workload, curate data, and deposit final results into the Cell Centered Database (Martone et al. 2008) via accessible web-interfaces.
描述(由申请人提供):使用高通量 3D 电子显微镜的先进仪器和细胞成像技术通过提供跨多种分辨率的近乎无缝的视图,正在推动复杂生物系统探索的一场新革命。这些数据集提供了分析大片神经组织的多细胞、细胞和亚细胞结构所需的广度和深度。虽然这些新的成像程序正在生成具有巨大价值的极其庞大的数据集,但其数量如此之大,以至于没有任何一个用户甚至实验室团队可以通过传统手段分析他们自己的成像活动的全部内容。为了应对这一挑战,我们建议进一步开发和完善用于大型神经细胞数据集高通量分割的原型混合系统:1)使用机器学习技术改进细胞和亚细胞结构分割的自动算法; 2) 将这些技术与可扩展且灵活的流程或工具套件结合起来,允许多个用户同时审查、编辑和管理这些自动方法的结果; 3)建立训练数据指导和改进自动化处理的知识库。该系统将允许项目科学家选择感兴趣的领域,执行自动分割算法,分配工作量,整理数据,并通过可访问的网络界面将最终结果存入以细胞为中心的数据库(Martone et al. 2008)。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mark H Ellisman其他文献
Mark H Ellisman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mark H Ellisman', 18)}}的其他基金
200keV, Energy Filtered, Intermediate-High Voltage Transmission Electron Microscope(IVEM)"
200keV、能量过滤、中高压透射电子显微镜(IVEM)"
- 批准号:
10642585 - 财政年份:2023
- 资助金额:
$ 42.55万 - 项目类别:
Scalable electron tomography for connectomics
用于连接组学的可扩展电子断层扫描
- 批准号:
10410742 - 财政年份:2022
- 资助金额:
$ 42.55万 - 项目类别:
Reversing Microglial Inflammarafts and Mitochondrial Dysfunction in Alzheimer's Disease
逆转阿尔茨海默病中的小胶质细胞炎症和线粒体功能障碍
- 批准号:
10607455 - 财政年份:2022
- 资助金额:
$ 42.55万 - 项目类别:
National Center for Microscopy and Imaging Research: A BRAIN Technology Integration and Dissemination Resource
国家显微镜和成像研究中心:大脑技术集成和传播资源
- 批准号:
10334513 - 财政年份:2021
- 资助金额:
$ 42.55万 - 项目类别:
National Center for Microscopy and Imaging Research: A BRAIN Technology Integration and Dissemination Resource
国家显微镜和成像研究中心:大脑技术集成和传播资源
- 批准号:
10544010 - 财政年份:2021
- 资助金额:
$ 42.55万 - 项目类别:
National Center for Microscopy and Imaging Research: A BRAIN Technology Integration and Dissemination Resource
国家显微镜和成像研究中心:大脑技术集成和传播资源
- 批准号:
10116087 - 财政年份:2021
- 资助金额:
$ 42.55万 - 项目类别:
The National Center for Microscopy and Imaging Research, a Community-wide Scientific Resource
国家显微镜和成像研究中心,社区范围的科学资源
- 批准号:
10399337 - 财政年份:2020
- 资助金额:
$ 42.55万 - 项目类别:
Advancing Multi-Color EM via Direct Detector-enabled 4D-STEM
通过支持直接检测器的 4D-STEM 推进多色 EM
- 批准号:
10031737 - 财政年份:2020
- 资助金额:
$ 42.55万 - 项目类别:
Advancing Multi-Color EM via Direct Detector-enabled 4D-STEM
通过支持直接检测器的 4D-STEM 推进多色 EM
- 批准号:
10795540 - 财政年份:2020
- 资助金额:
$ 42.55万 - 项目类别:
The National Center for Microscopy and Imaging Research, a Community-wide Scientific Resource
国家显微镜和成像研究中心,社区范围的科学资源
- 批准号:
10212509 - 财政年份:2020
- 资助金额:
$ 42.55万 - 项目类别:
相似海外基金
Investigating the Adoption, Actual Usage, and Outcomes of Enterprise Collaboration Systems in Remote Work Settings.
调查远程工作环境中企业协作系统的采用、实际使用和结果。
- 批准号:
24K16436 - 财政年份:2024
- 资助金额:
$ 42.55万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
WELL-CALF: optimising accuracy for commercial adoption
WELL-CALF:优化商业采用的准确性
- 批准号:
10093543 - 财政年份:2024
- 资助金额:
$ 42.55万 - 项目类别:
Collaborative R&D
Unraveling the Dynamics of International Accounting: Exploring the Impact of IFRS Adoption on Firms' Financial Reporting and Business Strategies
揭示国际会计的动态:探索采用 IFRS 对公司财务报告和业务战略的影响
- 批准号:
24K16488 - 财政年份:2024
- 资助金额:
$ 42.55万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 42.55万 - 项目类别:
EU-Funded
Assessing the Coordination of Electric Vehicle Adoption on Urban Energy Transition: A Geospatial Machine Learning Framework
评估电动汽车采用对城市能源转型的协调:地理空间机器学习框架
- 批准号:
24K20973 - 财政年份:2024
- 资助金额:
$ 42.55万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 42.55万 - 项目类别:
EU-Funded
De-Adoption Beta-Blockers in patients with stable ischemic heart disease without REduced LV ejection fraction, ongoing Ischemia, or Arrhythmias: a randomized Trial with blinded Endpoints (ABbreviate)
在没有左心室射血分数降低、持续性缺血或心律失常的稳定型缺血性心脏病患者中停用β受体阻滞剂:一项盲法终点随机试验(ABbreviate)
- 批准号:
481560 - 财政年份:2023
- 资助金额:
$ 42.55万 - 项目类别:
Operating Grants
Our focus for this project is accelerating the development and adoption of resource efficient solutions like fashion rental through technological advancement, addressing longer in use and reuse
我们该项目的重点是通过技术进步加快时装租赁等资源高效解决方案的开发和采用,解决更长的使用和重复使用问题
- 批准号:
10075502 - 财政年份:2023
- 资助金额:
$ 42.55万 - 项目类别:
Grant for R&D
Engage2innovate – Enhancing security solution design, adoption and impact through effective engagement and social innovation (E2i)
Engage2innovate — 通过有效参与和社会创新增强安全解决方案的设计、采用和影响 (E2i)
- 批准号:
10089082 - 财政年份:2023
- 资助金额:
$ 42.55万 - 项目类别:
EU-Funded
Collaborative Research: SCIPE: CyberInfrastructure Professionals InnoVating and brOadening the adoption of advanced Technologies (CI PIVOT)
合作研究:SCIPE:网络基础设施专业人员创新和扩大先进技术的采用 (CI PIVOT)
- 批准号:
2321091 - 财政年份:2023
- 资助金额:
$ 42.55万 - 项目类别:
Standard Grant














{{item.name}}会员




