Intracortical control of FES-restored arm and hand function in people with SCI
FES 恢复 SCI 患者手臂和手功能的皮质内控制
基本信息
- 批准号:8697643
- 负责人:
- 金额:$ 68.95万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-07-01 至 2019-04-30
- 项目状态:已结题
- 来源:
- 关键词:AlgorithmsAmplifiersAreaAttentionBrainCervicalClinicalCognitiveComputersDisabled PersonsEffectivenessElbowElectric StimulationElectrical Stimulation of the BrainElectrodesEye MovementsFaceFeedbackForearmFutureGoalsHandHand functionsHumanImplantImplanted ElectrodesIndividualInstitutional Review BoardsIntramuscularJointsLateralLearningMedicalMedical centerMetricMotionMotor CortexMovementMuscleNeckOperating SystemOral cavityOutpatientsParalysedParticipantPatternPerformancePersonsPhysiciansProceduresPropertyProsthesisProxyQuadriplegiaRampRecruitment ActivityRehabilitation therapyResearchRiskRoboticsRotationSafetyShoulderSignal TransductionSiteSpeedSpinal cord injuryStagingSterile coveringsSystemTestingTimeTongueTrainingUpper ExtremityVoiceWorkarmbasebrain machine interfacecompare effectivenesscomputer generatedexperiencegrasphand graspimprovedmicrosystemspreferencepublic health relevancerehearsalrelating to nervous systemscreeningsensorsignal processingvirtual
项目摘要
This project will restore arm and hand function to individuals with complete paralysis using functional electrical
stimulation (FES) AND will give these people the ability to command these movements in an effective and
intuitive way using an intracortical brain-machine interface (BMI). We will use percutaneous interfaces for both
the FES and BMI components to implement a fully functional but also reversible BMI-commanded FES
system. This is the immediate next step in the ultimate realization of a permanently implanted BMI-controlled
FES system. Paralyzed muscles of 5 individuals with high level (C1-C4) spinal cord injuries will be implanted
with FES electrodes to restore multiple motions of the arm and hand sufficient for meaningful multi-joint,
functional activities. In the same individuals, a 96-channel intracortical array ("BrainGate2") will be implanted in
the arm/hand area of primary motor cortex, and the resulting signals will be used to command the motions of
the participant's arm and hand via "thought". The main components of the proposed system are: intramuscular
electrodes with percutaneous leads (Ardiem Medical), an external stimulator (FES Center), a BrainGate2
intracortical array and associated external hardware (Neuroport by Blackrock Microsystems), and a standard
computer with a real-time operating system (Matlab xPC Target) as the FES controller. Participants will be
strongly motivated to optimize the performance of a fully functional system that drives their own paralyzed
arms, and they will be given ample opportunity to practice and learn the interfaces. We will test the control
performance for three different command interfaces that have been widely used in similar applications: (1)
continuous trajectory control used widely in previous BMI research, (2) movement goal-based control widely
used to control robotic arms, and (3) state-based "gated ramp" control used widely to control artificial
prosthetic arms. Participants will perform the same set of standard movements as well as functional activities
with each interface. We will compare the effectiveness and robustness of each command approach based on
technical and functional performance metrics (accuracy, speed, consistency over time, functional performance,
ease of use). We will also evaluate the ability of M1 to generate continuous, goal and state commands, and will
characterize changes in neural signal properties (tuning and modulation depth) while using these three
interfaces. This project will, for the first time, directly test the feasibility of a human intracortical BMI-controlled
FES upper limb system, so our results will guide the specifications of future, fully-implanted BMI systems. Our
team has 30+ years of experience in developing and testing upper limb FES systems, including in people with
complete arm paralysis. We have been working to develop a human intracortical BMI for the past 7 years, have
full regulatory approval, and have established a clinical BrainGate2 site in Cleveland. This project is a natural
expansion of our past work by combining the FES and BMI approaches in people with SCI. The technical risks
of this project are relatively low, but the potential scientific and rehabilitation returns are very high.
该项目将恢复手臂和手功能的个人完全瘫痪使用功能性电
刺激(FES)将使这些人能够有效地指挥这些运动,
使用皮质内脑机接口(BMI)的直观方式。我们将使用经皮接口,
FES和BMI组件,以实现全功能但也是可逆的BMI命令的FES
系统这是最终实现永久性植入BMI控制的下一步。
FES系统。将植入5名高度(C1-C4)脊髓损伤患者的麻痹肌肉
利用FES电极来恢复手臂和手的多个运动足以进行有意义的多关节,
功能活动。在相同的个体中,96通道皮质内阵列(“BrainGate 2”)将被植入到
初级运动皮层的手臂/手区域,并且由此产生的信号将用于命令
参与者的手臂和手通过“思想”。拟议系统的主要组成部分是:肌内
带经皮电极导线的电极(Ardiem Medical)、体外刺激器(FES Center)、BrainGate 2
皮质内阵列和相关的外部硬件(Blackrock Microsystems的Neuroport),以及标准
具有实时操作系统(Matlab xPC Target)的计算机作为FES控制器。参与者将被
强烈的动机,以优化性能的一个功能齐全的系统,驱动自己的瘫痪
他们将有充分的机会练习和学习界面。我们将测试对照组
三种不同的命令界面的性能,已广泛用于类似的应用程序:(1)
连续轨迹控制在以往BMI研究中被广泛采用;(2)基于运动目标的控制被广泛采用
用于控制机器人手臂,和(3)基于状态的“门控斜坡”控制广泛用于控制人工
假肢参与者将进行相同的标准动作以及功能活动
每个接口。我们将比较每种指挥方法的有效性和鲁棒性,
技术和功能性能指标(准确性、速度、随时间的一致性、功能性能,
易用性)。我们还将评估M1生成连续、目标和状态命令的能力,
在使用这三种方法的同时,表征神经信号特性(调谐和调制深度)的变化
接口。该项目将首次直接测试人类皮质内BMI控制的可行性。
因此,我们的研究结果将指导未来完全植入BMI系统的规格。我们
团队在开发和测试上肢FES系统方面拥有30多年的经验,包括在患有
手臂完全瘫痪在过去的7年里,我们一直致力于开发人类皮质内BMI,
获得监管机构的全面批准,并在克利夫兰建立了一个临床BrainGate 2站点。这个项目是一个自然的
通过结合FES和BMI方法扩展了我们过去在SCI患者中的工作。技术风险
该项目的投资回报率相对较低,但潜在的科学和恢复回报率很高。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Robert F. Kirsch其他文献
Skeletal Motor Neuroprostheses
骨骼运动神经假体
- DOI:
10.1142/9789813207158_0016 - 发表时间:
2017 - 期刊:
- 影响因子:5.7
- 作者:
Kevin L. Kilgore;Robert F. Kirsch;P. H. Peckham - 通讯作者:
P. H. Peckham
The feasibility of a functional neuromuscular stimulation powered mechanical gait orthosis with coordinated joint locking
功能性神经肌肉刺激驱动的具有协调关节锁定的机械步态矫形器的可行性
- DOI:
- 发表时间:
2004 - 期刊:
- 影响因子:0
- 作者:
C. To;Robert F. Kirsch;R. Kobetic;R. Triolo - 通讯作者:
R. Triolo
Announcing the Fourth Biomedical Engineering Education Summit Meeting
- DOI:
10.1007/s12195-019-00568-1 - 发表时间:
2019-03-27 - 期刊:
- 影响因子:5.000
- 作者:
Robert F. Kirsch;Martine LaBerge;Eric J. Perreault;Michael R. King - 通讯作者:
Michael R. King
Adaptive neural network controller for an upper extremity neuroprosthesis
用于上肢神经假体的自适应神经网络控制器
- DOI:
10.1109/iembs.2004.1404153 - 发表时间:
2004 - 期刊:
- 影响因子:0
- 作者:
Juan Gabriel Hincapie;D. Blana;Edward K. Chadwick;Robert F. Kirsch - 通讯作者:
Robert F. Kirsch
An artificial neural network approach to predicting arm movements from ECoG
通过 ECoG 预测手臂运动的人工神经网络方法
- DOI:
10.1109/iembs.2004.1404182 - 发表时间:
2004 - 期刊:
- 影响因子:0
- 作者:
Andrew S. Cornwell;Robert F. Kirsch;Richard C. Burgess - 通讯作者:
Richard C. Burgess
Robert F. Kirsch的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Robert F. Kirsch', 18)}}的其他基金
Fully implanted system for upper limb myoelectric prosthesis control
用于上肢肌电假肢控制的全植入系统
- 批准号:
8399277 - 财政年份:2013
- 资助金额:
$ 68.95万 - 项目类别:
Fully implanted system for upper limb myoelectric prosthesis control
用于上肢肌电假肢控制的全植入系统
- 批准号:
8976762 - 财政年份:2013
- 资助金额:
$ 68.95万 - 项目类别:
Design Specifications of Brain-Controlled Neuroprostheses
脑控神经假体的设计规范
- 批准号:
7541107 - 财政年份:2008
- 资助金额:
$ 68.95万 - 项目类别:
RESTORATION OF UPPER EXTREMITY FUNCTION IN HIGH LEVEL TETRAPLEGIA USING FES
使用 FES 恢复高位四肢瘫痪的上肢功能
- 批准号:
7378006 - 财政年份:2006
- 资助金额:
$ 68.95万 - 项目类别:
相似海外基金
SBIR Phase II: Thermally-optimized power amplifiers for next-generation telecommunication and radar
SBIR 第二阶段:用于下一代电信和雷达的热优化功率放大器
- 批准号:
2335504 - 财政年份:2024
- 资助金额:
$ 68.95万 - 项目类别:
Cooperative Agreement
Interferometric and Multiband optical Parametric Amplifiers for Communications (IMPAC)
用于通信的干涉式和多频带光学参量放大器 (IMPAC)
- 批准号:
EP/X031918/1 - 财政年份:2024
- 资助金额:
$ 68.95万 - 项目类别:
Fellowship
Josephson Parametric Amplifiers using CVD graphene junctions
使用 CVD 石墨烯结的约瑟夫森参量放大器
- 批准号:
EP/Y003152/1 - 财政年份:2024
- 资助金额:
$ 68.95万 - 项目类别:
Research Grant
Semiconductor-based Terahertz Traveling Wave Amplifiers for Monolithic Integration
用于单片集成的半导体太赫兹行波放大器
- 批准号:
2329940 - 财政年份:2023
- 资助金额:
$ 68.95万 - 项目类别:
Standard Grant
OPTIME-PA: Optimal MMIC Design of E-Band Power Amplifiers for Satcom using Dedicated Measurements and Non-Linear Modelling
OPTIME-PA:使用专用测量和非线性建模的卫星通信 E 频段功率放大器的最佳 MMIC 设计
- 批准号:
10075892 - 财政年份:2023
- 资助金额:
$ 68.95万 - 项目类别:
Collaborative R&D
Optical Glass Amplifiers for High Capacity Networks
用于高容量网络的光学玻璃放大器
- 批准号:
538379-2018 - 财政年份:2022
- 资助金额:
$ 68.95万 - 项目类别:
Collaborative Research and Development Grants
Investigating the function of ZU5 domain-containing proteins as amplifiers of caspase activation
研究含有 ZU5 结构域的蛋白质作为 caspase 激活放大器的功能
- 批准号:
10681326 - 财政年份:2022
- 资助金额:
$ 68.95万 - 项目类别:
Investigating the function of ZU5 domain-containing proteins as amplifiers of caspase activation
研究含有 ZU5 结构域的蛋白质作为 caspase 激活放大器的功能
- 批准号:
10621402 - 财政年份:2022
- 资助金额:
$ 68.95万 - 项目类别:
Broadband Digital Doherty Amplifiers for Sub-6 GHz 5G wireless Applications
适用于 6 GHz 以下 5G 无线应用的宽带数字 Doherty 放大器
- 批准号:
573452-2022 - 财政年份:2022
- 资助金额:
$ 68.95万 - 项目类别:
Alliance Grants
TALENT – Tapered AmpLifiErs for quaNtum Technologies
人才 — 量子技术的锥形放大器
- 批准号:
10032436 - 财政年份:2022
- 资助金额:
$ 68.95万 - 项目类别:
Collaborative R&D