Center for Functional Electrical Stimulation

功能性电刺激中心

基本信息

项目摘要

The Center for Functional Electrical Stimulation (FES Center) is a 25 year consortium that develops and deploys rehabilitation treatments based on functional electrical stimulation (FES) for Veterans and civilians with neurological, autonomic, psychiatric, pain, and other disorders. The VISION of the Cleveland FES Center is broad - to perform cutting edge research and creative engineering, and to then transition these discoveries and technologies into the clinical environment to create effective, clinically-available options for patients and the people who care for them. The MISSION of the FES Center, however, is very clear and tightly focused - to develop interventions based on the electrical stimulation of the nervous system to replace or compensate for natural neural function lost due to neurological disease or injury. The scope of FES Center research has evolved and expanded significantly during the current five year funding cycle to reflect new scientific discoveries and new clinical opportunities. This proposal represents this evolution and thus describes the five research thrusts of the FES Center for the next five years: (1) MOVEMENT RESTORATION: restoring limb, respiratory, and other body movements; (2) BRAIN HEALTH: brain stimulation interventions for movement disorders (e.g., Parkinson's disease), stroke and traumatic brain injuries, epilepsy, and neuropsychiatric disorders, as well as brain recording technologies; (3) PAIN: pain mitigation through stimulation of peripheral nerves and the spinal cord; (4) AUTONOMIC SYSTEMS: autonomic nervous system stimulation for restoration and/or regulation of internal body and visceral functions; and (5) TECHNOLOGY AND TOOLS: development of basic stimulation techniques, implantable systems and electrodes, modeling and simulation tools, and other rehabilitation approaches complementary to FES. These seemingly diverse research thrusts in fact share a deep foundation of basic knowledge, use similar and often identical technologies, and rely on a proven model of genuine clinical-technical partnerships. The FES Center has built a critical mass of investigators in each of these research thrust areas, and will continue to pursue research in important new clinical areas where FES may provide effective treatments. FES Center research thrusts are tightly aligned with the priorities of the VA RR&D Service, and FES Center investigators are leaders in the national and local rehabilitation communities. The FES Center operates with core funding from the VA Rehabilitation Research and Development Service and uses these resources to broadly enable the success of its investigators by providing a unique technical infrastructure, specialized research services (regulatory, statistical, medical illustration, inter-institutional administrative support), development of key industrial and academic relationships, and communication to potential patients, other scientists, and to the general public. The consortium structure of the FES Center continues to effectively leverage the amazingly rich academic and clinical expertise across the Cleveland area. The FES Center focus on community building, collaboration and inclusion, and shared infrastructure – rather than on funding specific projects – has promoted continuous innovation and growth, enabled MANY investigators to successfully pursue major projects that would otherwise be impractical, and has realized economic efficiencies through core facilities and economies of scale. AND, the FES Center has steered this major enterprise to focus on the rehabilitation challenges of Veterans! The FES Center and its investigators have been highly successful over the past five years in terms of research productivity and collaboration, clinical impact, leadership in rehabilitation research, and training and career development of VA investigators. We have developed ambitious but obtainable goals for the coming 5 years, as well as a clear plan for achieving these goals. The FES Center will continue to provide core resources that can be leveraged by our investigators and their interdisciplinary teams to conduct unique, cutting-edge research and clinical deployment. The scope of FES Center research has been expanded over the past five years, but our overriding objective - to achieve increasingly meaningful impact on the lives of Veterans and civilians with disabilities - remains unchanged. The FES Center is thus poised to have continued impact on rehabilitation research into the future.
功能电刺激中心(FES中心)是一个拥有25年历史的研发和部署联盟

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Robert F. Kirsch其他文献

Skeletal Motor Neuroprostheses
骨骼运动神经假体
  • DOI:
    10.1142/9789813207158_0016
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    5.7
  • 作者:
    Kevin L. Kilgore;Robert F. Kirsch;P. H. Peckham
  • 通讯作者:
    P. H. Peckham
The feasibility of a functional neuromuscular stimulation powered mechanical gait orthosis with coordinated joint locking
功能性神经肌肉刺激驱动的具有协调关节锁定的机械步态矫形器的可行性
Announcing the Fourth Biomedical Engineering Education Summit Meeting
  • DOI:
    10.1007/s12195-019-00568-1
  • 发表时间:
    2019-03-27
  • 期刊:
  • 影响因子:
    5.000
  • 作者:
    Robert F. Kirsch;Martine LaBerge;Eric J. Perreault;Michael R. King
  • 通讯作者:
    Michael R. King
Adaptive neural network controller for an upper extremity neuroprosthesis
用于上肢神经假体的自适应神经网络控制器
An artificial neural network approach to predicting arm movements from ECoG
通过 ECoG 预测手臂运动的人工神经网络方法

Robert F. Kirsch的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Robert F. Kirsch', 18)}}的其他基金

RR&D Research Career Scientist Application
RR
  • 批准号:
    10536800
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Center for Functional Electrical Stimulation
功能性电刺激中心
  • 批准号:
    10043833
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
Center for Functional Electrical Stimulation
功能性电刺激中心
  • 批准号:
    9222501
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
Intracortical control of FES-restored arm and hand function in people with SCI
FES 恢复 SCI 患者手臂和手功能的皮质内控制
  • 批准号:
    8697643
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
Fully implanted system for upper limb myoelectric prosthesis control
用于上肢肌电假肢控制的全植入系统
  • 批准号:
    8399277
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
Fully implanted system for upper limb myoelectric prosthesis control
用于上肢肌电假肢控制的全植入系统
  • 批准号:
    8976762
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
Design Specifications of Brain-Controlled Neuroprostheses
脑控神经假体的设计规范
  • 批准号:
    7541107
  • 财政年份:
    2008
  • 资助金额:
    --
  • 项目类别:
RESTORATION OF UPPER EXTREMITY FUNCTION IN HIGH LEVEL TETRAPLEGIA USING FES
使用 FES 恢复高位四肢瘫痪的上肢功能
  • 批准号:
    7378006
  • 财政年份:
    2006
  • 资助金额:
    --
  • 项目类别:
CONTROLLER DEVELOPMENT FOR UPPER LIMB MOVEMENT
上肢运动控制器开发
  • 批准号:
    7920459
  • 财政年份:
    2005
  • 资助金额:
    --
  • 项目类别:
RESTORATION OF HAND AND ARM FUNCTION BY FNS
FNS 恢复手部和手臂功能
  • 批准号:
    7950355
  • 财政年份:
    2005
  • 资助金额:
    --
  • 项目类别:

相似海外基金

Free-living and in-lab effects of sedentary time on cardiac autonomic nervous system function in youth with overweight/obesity
久坐时间对超重/肥胖青少年心脏自主神经系统功能的自由生活和实验室影响
  • 批准号:
    10598404
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Assessment of Autonomic Nervous System Function in Post-Acute Sequelae of COVID-19 (PASC) and Characterization of the Patient Experience
COVID-19 急性后遗症 (PASC) 的自主神经系统功能评估和患者体验特征
  • 批准号:
    480723
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Comprehensive research to elucidate the diversity and dispersibility of the autonomic nervous system
阐明自主神经系统多样性和分散性的综合研究
  • 批准号:
    23H00422
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Relationship of autonomic nervous system function on functional brain networks during normal drinking and abstinence in daily drinkers
日常饮酒者正常饮酒和戒酒时自主神经系统功能与功能性脑网络的关系
  • 批准号:
    10540603
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
The Acute Effects of Cannabis and Cannabinoids on Human Cardiovascular Physiology: Understanding Contributing Mechanisms in the Myocardium, Peripheral Vasculature, and Autonomic Nervous System.
大麻和大麻素对人类心血管生理学的急性影响:了解心肌、外周脉管系统和自主神经系统的贡献机制。
  • 批准号:
    548126-2020
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Role of "motivation" neurons in regulating autonomic nervous system function
“动机”神经元在调节自主神经系统功能中的作用
  • 批准号:
    22K19709
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Verification of the effectiveness of neck and shoulder warm compresses in improving stiffness symptoms, psychological symptoms, and autonomic nervous system balance.
验证颈肩部热敷对改善僵硬症状、心理症状和自主神经系统平衡的有效性。
  • 批准号:
    22K17447
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Autonomic Nervous System Functioning in Heavy Drinking Adolescents: Interactions with sleep, circadian functioning, and health
酗酒青少年的自主神经系统功能:与睡眠、昼夜节律功能和健康的相互作用
  • 批准号:
    10201841
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
Reconstruction of the concept of autonomic nervous system by developing innovative technology
开发创新技术重建自主神经系统概念
  • 批准号:
    21K18269
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Challenging Research (Pioneering)
The Acute Effects of Cannabis and Cannabinoids on Human Cardiovascular Physiology: Understanding Contributing Mechanisms in the Myocardium, Peripheral Vasculature, and Autonomic Nervous System.
大麻和大麻素对人类心血管生理学的急性影响:了解心肌、外周脉管系统和自主神经系统的贡献机制。
  • 批准号:
    548126-2020
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了