Reducing mastectomy rates in invasive lobular carcinoma by high-resolution 3D breast CT

通过高分辨率 3D 乳腺 CT 降低浸润性小叶癌的乳房切除率

基本信息

项目摘要

 DESCRIPTION (provided by applicant): Cancers of the breast are the second most common type of breast cancers (after invasive ductal carcinoma, IDC) and account for 10-15% of all breast cancers. More than any other breast cancer, lobular cancers present as multifocal, multicentric and bilateral disease. Among histological types, re- excision rates are highest (28.3%) for invasive lobular carcinoma and substantially more than invasive ductal carcinoma (19.1%). For subjects diagnosed with lobular carcinoma, breast MRI is currently the preferred modality for evaluating disease extent as ultrasound and mammography have been shown to be inferior in accurately estimating tumor size. Meta-analysis of pooled data have shown that breast MRI has a sensitivity of 93.3% for detecting lobular carcinoma with additional lesions detected in 32% and 7% of patients in the ipsilateral and contralateral breasts, respectively. However, for approximately 25% to 35% of tumors, the size estimated from breast MRI differs from pathology by more than 1 cm. The use of pre-operative breast MRI for evaluating disease extent has been associated with increased odds for mastectomy. A recent study analyzing 243 patients with invasive lobular carcinoma (ILC) concluded that ILC can be safely treated with conservative surgery but a more accurate preoperative evaluation of tumor size and multifocality is needed to reduce re-excision rate. We hypothesize the high spatial resolution 3D imaging provided by dedicated breast CT that is capable of resolving features in the 200 to 250 microns range would improve the proportion of tumors that are concordant in size with histopathology and hence would increase the likelihood of subjects being treated with breast conserving surgery. Dedicated breast CT does not require physical compression of the breast and takes 10 seconds for a scan. This prospective clinical study is designed to address if all foci observed with contrast-enhanced breast MRI are also visible with contrast-enhanced breast CT (sensitivity) and if the tumor size determined from breast CT is more concordant with pathology than breast MRI. The study will also investigate two automated segmentation and tumor size quantification methods to determine, which quantitative algorithm is more accurate, with tumor size from surgical pathology serving as reference standard. Thus, the proposed study challenges existing paradigms on the accuracy of tumor size measurements and paves for the way for reducing mastectomy rates.
 描述(由适用提供):乳腺癌是第二常见的乳腺癌类型(仅次于侵入性导管癌,IDC),占所有乳腺癌的10-15%。比任何其他乳腺癌都多,小叶癌作为多焦点,多中心和双侧疾病。在组织学类型中,侵入性小叶癌的重新筛选率最高(28.3%),而侵入性导管癌(19.1%)大得多。对于诊断为小叶癌的受试者,乳腺MRI目前是评估疾病程度的首选方式,因为超声和乳房摄影术在准确估计肿瘤大小的准确估计中较低。合并数据的荟萃分析表明,乳腺MRI的灵敏度为93.3%,用于检测小叶癌,在同侧和对侧乳房中,在32%和7%的患者中检测到其他病变。然而,对于大约25%至35%的肿瘤,乳腺MRI估计的大小与病理学不同1 cm。术前乳房MRI评估疾病程度的使用与乳房切除术的几率增加有关。最近的一项研究分析仪243例侵入性小叶癌(ILC)的患者得出结论,可以通过保守手术安全地对ILC进行安全治疗,但需要对肿瘤大小和多焦点进行更准确的术前评估,以降低重新分辨率。我们假设由专用乳腺CT提供的高空间分辨率3D成像,该成像能够解决200至250微米范围内的特征,将改善与组织病理学相一致的肿瘤的比例,因此会增加受试者与乳房保存手术治疗的可能性。专用的乳房CT不需要对乳房进行物理压缩,需要10秒钟才能进行扫描。这项前瞻性临床研究旨在解决是否与对比增强的乳腺MRI观察到的所有焦点也与对比增强的乳腺CT(敏感性)可见,并且是否从乳腺CT确定的肿瘤大小比乳房MRI更一致。该研究还将研究两种自动分割和肿瘤尺寸定量方法,以确定哪种定量算法更准确,而外科病理学的肿瘤大小则是参考标准。这是拟议的研究对肿瘤大小测量的准确性和摊铺的准确性提出了挑战,以降低乳房切除术率。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

SRINIVASAN VEDANTHAM其他文献

SRINIVASAN VEDANTHAM的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('SRINIVASAN VEDANTHAM', 18)}}的其他基金

Upright, Low-dose, High-resolution, 3D Breast CT
立式、低剂量、高分辨率、3D 乳腺 CT
  • 批准号:
    10407991
  • 财政年份:
    2019
  • 资助金额:
    $ 30.65万
  • 项目类别:
Upright, Low-dose, High-resolution, 3D Breast CT
立式、低剂量、高分辨率、3D 乳腺 CT
  • 批准号:
    10627825
  • 财政年份:
    2019
  • 资助金额:
    $ 30.65万
  • 项目类别:
Reducing mastectomy rates in invasive lobular carcinoma by high-resolution 3D breast CT
通过高分辨率 3D 乳腺 CT 降低浸润性小叶癌的乳房切除率
  • 批准号:
    9455075
  • 财政年份:
    2017
  • 资助金额:
    $ 30.65万
  • 项目类别:
Quantitative breast cancer risk index from routine 3-D imaging
常规 3D 成像定量乳腺癌风险指数
  • 批准号:
    8697025
  • 财政年份:
    2013
  • 资助金额:
    $ 30.65万
  • 项目类别:
Quantitative breast cancer risk index from routine 3-D imaging
常规 3D 成像定量乳腺癌风险指数
  • 批准号:
    8489847
  • 财政年份:
    2013
  • 资助金额:
    $ 30.65万
  • 项目类别:
Design and Optimization of Dedicated Computed Tomography of the Breast
乳腺专用计算机断层扫描的设计与优化
  • 批准号:
    8073116
  • 财政年份:
    2009
  • 资助金额:
    $ 30.65万
  • 项目类别:
Design and Optimization of Dedicated Computed Tomography of the Breast
乳腺专用计算机断层扫描的设计与优化
  • 批准号:
    7731139
  • 财政年份:
    2009
  • 资助金额:
    $ 30.65万
  • 项目类别:
Design and Optimization of Dedicated Computed Tomography of the Breast
乳腺专用计算机断层扫描的设计与优化
  • 批准号:
    7907802
  • 财政年份:
    2009
  • 资助金额:
    $ 30.65万
  • 项目类别:

相似国自然基金

时空序列驱动的神经形态视觉目标识别算法研究
  • 批准号:
    61906126
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
  • 批准号:
    41901325
  • 批准年份:
    2019
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
  • 批准号:
    61802133
  • 批准年份:
    2018
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
  • 批准号:
    61872252
  • 批准年份:
    2018
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目
针对内存攻击对象的内存安全防御技术研究
  • 批准号:
    61802432
  • 批准年份:
    2018
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Bayesian Statistical Learning for Robust and Generalizable Causal Inferences in Alzheimer Disease and Related Disorders Research
贝叶斯统计学习在阿尔茨海默病和相关疾病研究中进行稳健且可推广的因果推论
  • 批准号:
    10590913
  • 财政年份:
    2023
  • 资助金额:
    $ 30.65万
  • 项目类别:
Predicting firearm suicide in military veterans outside the VA health system using linked civilian electronic health record data
使用链接的民用电子健康记录数据预测退伍军人管理局卫生系统外退伍军人的枪支自杀
  • 批准号:
    10655968
  • 财政年份:
    2023
  • 资助金额:
    $ 30.65万
  • 项目类别:
Deep Learning Based Natural Language Processing Markers of Anxiety and Depression
基于深度学习的自然语言处理的焦虑和抑郁标记
  • 批准号:
    10723819
  • 财政年份:
    2023
  • 资助金额:
    $ 30.65万
  • 项目类别:
Fair risk profiles and predictive models for outcomes of obstructive sleep apnea through electronic medical record data
通过电子病历数据对阻塞性睡眠呼吸暂停结果进行公平的风险概况和预测模型
  • 批准号:
    10678108
  • 财政年份:
    2023
  • 资助金额:
    $ 30.65万
  • 项目类别:
Mining minority enriched AllofUs data for innovative ethnic specific risk prediction modeling
挖掘少数族裔丰富的 AllofUs 数据,用于创新的种族特定风险预测模型
  • 批准号:
    10798514
  • 财政年份:
    2023
  • 资助金额:
    $ 30.65万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了