Design and Optimization of Dedicated Computed Tomography of the Breast

乳腺专用计算机断层扫描的设计与优化

基本信息

项目摘要

DESCRIPTION (provided by applicant): This bioengineering research grant is responsive to PA-07-279 (reissue of PA-06-419). It is a collaboration between the University of Massachusetts Medical School and the Utah Center for Advanced Imaging Research at University of Utah. Superposition of breast structures in screen-film and digital mammography may result in missed cancers due to 'masking' effect, or may mimic the presence of a lesion resulting in additional imaging or biopsy. Dedicated breast Computed Tomographic (CT) imaging of the breast can overcome this superposition problem, and provide much improved contrast, thus improving lesion detectability. Further, breast CT can be performed at low radiation dose (equivalent to mammography) with no or minimal physical compression of the breast, alleviating patient discomfort. It can provide for 3-D lesion morphology, which could serve as a diagnostic indicator, and for better quantitative assessment of breast glandular content, a likely risk factor for breast cancer. This work is focused on design and optimization of a dedicated breast CT system. Specifically, the research plan is to address known challenges in breast CT, such as maximizing the inclusion of breast tissue within scan field, determining appropriate source-detector trajectory with consideration for data completeness and reconstruction complexity, and developing noise suppression schemes to improve microcalcification visibility. The research plan includes determining optimal patient position for maximizing breast tissue inclusion, implementation of several image acquisition trajectories and appropriate reconstruction algorithms, comprehensive mathematical simulation and optimization of critical system and reconstruction parameters. Complete characterization of the improvement achieved on a bench-top system will be performed through observer-independent physical metrics and through surgical mastectomy specimen-based observer studies. The results from this study will provide for an ergonomic design and optimized image acquisition and reconstruction technique that can be readily translated to a clinical imaging system. A well-designed dedicated breast CT system can serve as a platform technology for screening and diagnostic imaging, implant imaging, 3-D presurgical planning, monitoring preoperative treatment, and guidance in minimally invasive surgery. We believe our approach will have a major impact on the detection and management of breast cancer. PUBLIC HEALTH RELEVANCE: Volumetric 3-D imaging with a dedicated breast CT system has the potential to be an effective tool to overcome the tissue superposition problem in mammography which results in missed cancers and unnecessary recall of the patient for additional imaging, and for monitoring the effectiveness of therapeutic treatments. However, there are known challenges such as maximizing breast tissue inclusion during the scan, visualization of microcalcifications due to image noise and loss of contrast, and cone- beam artifacts. In this research, we propose to develop methods to overcome these challenges and demonstrate the improved image quality obtained with such methods.
描述(由申请人提供):此生物工程研究资助是响应PA-07-279(PA-06-419的重新发布)。这是马萨诸塞州大学医学院和犹他州大学犹他州高级成像研究中心的合作项目。屏幕胶片和数字乳腺X射线摄影中乳房结构的叠加可能由于“掩蔽”效应而导致遗漏癌症,或者可能模拟病变的存在,从而导致额外的成像或活检。乳房的专用乳房计算机断层摄影(CT)成像可以克服这种叠加问题,并提供大大改善的对比度,从而改善病变可检测性。此外,乳房CT可以在低辐射剂量(相当于乳房X线照相术)下进行,没有或最小程度地物理压迫乳房,减轻患者不适。它可以提供3D病变形态,这可以作为一个诊断指标,并更好地定量评估乳腺腺体内容,乳腺癌的一个可能的风险因素。本工作的重点是设计和优化的专用乳腺CT系统。具体而言,研究计划是解决乳腺CT中的已知挑战,例如最大限度地将乳腺组织包含在扫描场中,考虑数据完整性和重建复杂性确定适当的源-探测器轨迹,以及开发噪声抑制方案以提高微钙化的可见性。研究计划包括确定最佳患者位置,以最大限度地提高乳腺组织的包容性,实施几种图像采集轨迹和适当的重建算法,全面的数学模拟和关键系统和重建参数的优化。将通过独立于患者的物理指标和基于手术乳房切除术的观察者研究,对在台式系统上实现的改善进行完整表征。本研究的结果将提供人体工程学设计和优化的图像采集和重建技术,可以很容易地转化为临床成像系统。设计良好的专用乳腺CT系统可以作为筛查和诊断成像、植入成像、三维术前规划、术前治疗监测和微创手术指导的平台技术。我们相信我们的方法将对乳腺癌的检测和管理产生重大影响。公共卫生相关性:使用专用乳腺CT系统的体积3-D成像有可能成为一种有效的工具,以克服乳腺X射线摄影中的组织叠加问题,该问题导致遗漏癌症和患者不必要的回忆以进行额外成像,并用于监测治疗性治疗的有效性。然而,存在已知的挑战,诸如在扫描期间使乳房组织包含最大化、由于图像噪声和对比度损失引起的微钙化的可视化以及锥形束伪影。在这项研究中,我们建议开发方法来克服这些挑战,并证明用这种方法获得的图像质量得到改善。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

SRINIVASAN VEDANTHAM其他文献

SRINIVASAN VEDANTHAM的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('SRINIVASAN VEDANTHAM', 18)}}的其他基金

Upright, Low-dose, High-resolution, 3D Breast CT
立式、低剂量、高分辨率、3D 乳腺 CT
  • 批准号:
    10407991
  • 财政年份:
    2019
  • 资助金额:
    $ 33.71万
  • 项目类别:
Upright, Low-dose, High-resolution, 3D Breast CT
立式、低剂量、高分辨率、3D 乳腺 CT
  • 批准号:
    10627825
  • 财政年份:
    2019
  • 资助金额:
    $ 33.71万
  • 项目类别:
Reducing mastectomy rates in invasive lobular carcinoma by high-resolution 3D breast CT
通过高分辨率 3D 乳腺 CT 降低浸润性小叶癌的乳房切除率
  • 批准号:
    9455075
  • 财政年份:
    2017
  • 资助金额:
    $ 33.71万
  • 项目类别:
Reducing mastectomy rates in invasive lobular carcinoma by high-resolution 3D breast CT
通过高分辨率 3D 乳腺 CT 降低浸润性小叶癌的乳房切除率
  • 批准号:
    8882960
  • 财政年份:
    2015
  • 资助金额:
    $ 33.71万
  • 项目类别:
Quantitative breast cancer risk index from routine 3-D imaging
常规 3D 成像定量乳腺癌风险指数
  • 批准号:
    8697025
  • 财政年份:
    2013
  • 资助金额:
    $ 33.71万
  • 项目类别:
Quantitative breast cancer risk index from routine 3-D imaging
常规 3D 成像定量乳腺癌风险指数
  • 批准号:
    8489847
  • 财政年份:
    2013
  • 资助金额:
    $ 33.71万
  • 项目类别:
Design and Optimization of Dedicated Computed Tomography of the Breast
乳腺专用计算机断层扫描的设计与优化
  • 批准号:
    8073116
  • 财政年份:
    2009
  • 资助金额:
    $ 33.71万
  • 项目类别:
Design and Optimization of Dedicated Computed Tomography of the Breast
乳腺专用计算机断层扫描的设计与优化
  • 批准号:
    7731139
  • 财政年份:
    2009
  • 资助金额:
    $ 33.71万
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 33.71万
  • 项目类别:
    Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 33.71万
  • 项目类别:
    Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 33.71万
  • 项目类别:
    Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 33.71万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 33.71万
  • 项目类别:
    Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 33.71万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 33.71万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 33.71万
  • 项目类别:
    EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 33.71万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 33.71万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了