Clinical decision support optimizing NEC prevention implementation in NICU
临床决策支持优化 NEC 预防在 NICU 的实施
基本信息
- 批准号:9352291
- 负责人:
- 金额:$ 14.16万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-09-30 至 2019-09-29
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
DESCRIPTION (provided by applicant): In neonatal intensive care using clinical decision support, the focus of this career development proposal is to improve application of evidence-based practices for prevention and early recognition of necrotizing enterocolitis (NEC) among premature infants. NEC is a catastrophic complication threatening the life of fragile premature infants, yet adoption of prevention and early recognition practices (e.g. preferential use of human milk; adoption of standardized feeding protocols; transfusion and antibiotics management) differ widely as do NEC rates. Parents play a key role in NEC prevention (e.g. providing mother's own milk), but heretofore, have been insufficiently engaged as partners. Accounting for 20% of US NICU costs, NEC develops late in the hospital postnatal course and can strike suddenly but until now, no tools to guide early NEC recognition were available. To address this need, a NEC risk decision rule, called GutCheckNEC was derived and validated by our team to accurately discriminate NEC. Integration of prevention practices into clinical workflow using clinical decision support (CDS) has been shown to improve adherence to recommended care across settings. Yet, both the use and evaluation of CDS in NICUs are sparse, and we know of no studies related to CDS support for prevention of NEC. Informed by the Translating Research Into Practice (TRIP) framework for implementation science, in two NICUs using an interrupted time series design, we will integrate NEC-Zero into CDS to fit clinician workflow, optimize usability, and test effects on NEC disease, neonate nutrition and parental satisfaction. The central hypothesis is that adherence to guideline-recommended NEC prevention and early recognition practices (called "NEC-Zero" and evaluated using an adherence score) will improve when delivered using CDS and NEC disease will decline. First, clinician workflow will be described using workflow maps constructed from interviews with local clinicians and the NEC-Zero integrated into CDS in the form of standard order sets, alerts, reminders and trend data (Aim 1). Then, using a simulated NEC scenario and iterative evaluation, NEC-Zero usability will be optimized (Aim 2). Finally, with an interrupted time series analysis from indicators in the 1 year prior to and 1 year after NEC-Zero implementation, we will compare the trend for NEC disease, neonate nutrition, and parent satisfaction outcomes; then describe the relationship between post-NEC-Zero clinician CDS outcomes (adherence scores, use response rates, satisfaction, perception of unintended consequences of CDS) and NEC disease outcomes (Aim 3). Formal training in usable clinical decision support under the mentorship of Daniel Malone, PhD, RPh & co-mentor Robert Greenes, MD, PhD will complement training in theories and methodologies of Implementation Science mentored by Drs. Marita Titler and Melanie Bell. Over time we will be able to apply the automation and testing of CDS for multi-faceted interventions to other clinical challenges in NICUs to achieve the goal for this program of research, which is to reduce morbidity and mortality from neonatal complications and limit costs.
描述(申请人提供):在使用临床决策支持的新生儿重症监护中,这项职业发展提案的重点是改进循证实践的应用,以预防和早期识别早产儿坏死性小肠结肠炎(NEC)。NEC是一种威胁脆弱早产儿生命的灾难性并发症,然而,预防和早期识别做法(如优先使用母乳;采用标准化喂养方案;输血和抗生素管理)的差异很大,NEC的比率也不同。父母在预防NEC方面发挥着关键作用(例如,提供母亲自己的母乳),但到目前为止,作为合作伙伴的参与不够。占美国NICU费用的20%,NEC在医院出生后进程中发展较晚,可以突然发作,但到目前为止,还没有工具来指导早期NEC识别。为了满足这一需求,我们团队推出了名为GutCheckNEC的NEC风险决策规则,并进行了验证,以准确区分NEC。使用临床决策支持(CDS)将预防实践整合到临床工作流程中已被证明可以提高对各种环境下推荐护理的遵从性。然而,CDS在NICU中的使用和评估都是稀少的,我们还不知道有关于CDS支持预防NEC的研究。在实施科学转化研究实践(TRIP)框架的启发下,我们将在两个使用中断时间序列设计的NICU中,将NEC-Zero集成到CDS中,以适应临床医生的工作流程,优化可用性,并测试对NEC疾病、新生儿营养和父母满意度的影响。中心假设是,当使用CDS提供时,对指南推荐的NEC预防和早期识别实践(称为“NEC-Zero”,并使用遵守评分进行评估)的遵从性将提高,而NEC疾病将下降。首先,将使用从与当地临床医生的访谈构建的工作流程图和以标准订单集、警报、提醒和趋势数据(目标1)的形式集成到CDS中的NEC-Zero来描述临床医生的工作流程。然后,使用模拟的NEC场景和迭代评估,NEC-Zero可用性将被优化(目标2)。最后,通过对NEC-Zero实施前1年和实施后1年的指标进行中断的时间序列分析,我们将比较NEC疾病、新生儿营养和父母满意结果的趋势;然后描述NEC-Zero后临床医生CDS结果(依从性分数、使用反应率、满意度、对CDS意外后果的感知)和NEC疾病结果(目标3)之间的关系。在Daniel Malone,PhD,RPh和共同导师Robert Greenes,MD,PhD的指导下进行的可用的临床决策支持的正式培训将补充由Marita Titler博士和Melanie Bell博士指导的实施科学的理论和方法方面的培训。随着时间的推移,我们将能够将CDS用于多方面干预的自动化和测试应用于NICU的其他临床挑战,以实现该研究计划的目标,即减少新生儿并发症的发病率和死亡率,并限制成本。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sheila Maria Gephart其他文献
Sheila Maria Gephart的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sheila Maria Gephart', 18)}}的其他基金
Clinical decision support optimizing NEC prevention implementation in NICU
临床决策支持优化 NEC 预防在 NICU 的实施
- 批准号:
9144760 - 财政年份:2014
- 资助金额:
$ 14.16万 - 项目类别:
Clinical decision support optimizing NEC prevention implementation in NICU
临床决策支持优化 NEC 预防在 NICU 的实施
- 批准号:
8819822 - 财政年份:2014
- 资助金额:
$ 14.16万 - 项目类别:
Clinical decision support optimizing NEC prevention implementation in NICU
临床决策支持优化 NEC 预防在 NICU 的实施
- 批准号:
8923171 - 财政年份:2014
- 资助金额:
$ 14.16万 - 项目类别:
Validating a Necrotizing Enterocolitis (NEC) Risk Index for Neonates
验证新生儿坏死性小肠结肠炎 (NEC) 风险指数
- 批准号:
8198885 - 财政年份:2011
- 资助金额:
$ 14.16万 - 项目类别:
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
补偿性还是非补偿性规则:探析风险决策的行为与神经机制
- 批准号:31170976
- 批准年份:2011
- 资助金额:64.0 万元
- 项目类别:面上项目
基于神经营销学方法的品牌延伸认知与决策研究
- 批准号:70772048
- 批准年份:2007
- 资助金额:20.0 万元
- 项目类别:面上项目
相似海外基金
Clinical Decision Support System for Early Detection of Cognitive Decline Using Electronic Health Records and Deep Learning
利用电子健康记录和深度学习早期检测认知衰退的临床决策支持系统
- 批准号:
10603902 - 财政年份:2023
- 资助金额:
$ 14.16万 - 项目类别:
University of Minnesota Clinical and Translational Science Institute (UMN CTSI)
明尼苏达大学临床与转化科学研究所 (UMN CTSI)
- 批准号:
10763967 - 财政年份:2023
- 资助金额:
$ 14.16万 - 项目类别:
Clinical decision support algorithm to optimize management of respiratory tract infection in children attending primary health facilities in Kilimanjaro Region, Tanzania
用于优化坦桑尼亚乞力马扎罗地区初级卫生机构儿童呼吸道感染管理的临床决策支持算法
- 批准号:
10734148 - 财政年份:2023
- 资助金额:
$ 14.16万 - 项目类别:
Clinical Decision Support Software for diagnosing and managing eye conditions (Glaucoma) from routine Retinal Fundus Images
用于通过常规视网膜眼底图像诊断和管理眼部疾病(青光眼)的临床决策支持软件
- 批准号:
10055213 - 财政年份:2023
- 资助金额:
$ 14.16万 - 项目类别:
Collaborative R&D
CRII: SCH: Domain-guided Machine Learning for Clinical Decision Support in Epilepsy
CRII:SCH:用于癫痫临床决策支持的领域引导机器学习
- 批准号:
2344731 - 财政年份:2023
- 资助金额:
$ 14.16万 - 项目类别:
Standard Grant
Clinical and Translational Research Innovation in Dental Schools (ClinTrain-RIDeS)
牙科学校的临床和转化研究创新 (ClinTrain-RIDeS)
- 批准号:
10754747 - 财政年份:2023
- 资助金额:
$ 14.16万 - 项目类别:
Development of a Novel Venous Thromboembolism Risk Assessment Model for Perioperative Clinical Decision Support
开发用于围手术期临床决策支持的新型静脉血栓栓塞风险评估模型
- 批准号:
10748559 - 财政年份:2023
- 资助金额:
$ 14.16万 - 项目类别:
Platform to support clinical variant interpretation through probabilistic assessment of functional evidence
通过功能证据的概率评估支持临床变异解释的平台
- 批准号:
10742133 - 财政年份:2023
- 资助金额:
$ 14.16万 - 项目类别:
The OSU Center for Clinical and Translational Science: Advancing Today's Discoveries to Improve Health
俄勒冈州立大学临床和转化科学中心:推进当今的发现以改善健康
- 批准号:
10705933 - 财政年份:2023
- 资助金额:
$ 14.16万 - 项目类别:
Clinical biomarker for early prediction of chemotherapy-induced peripheral neuropathy
早期预测化疗引起的周围神经病变的临床生物标志物
- 批准号:
10604018 - 财政年份:2023
- 资助金额:
$ 14.16万 - 项目类别:














{{item.name}}会员




