Changing the Default for Tobacco Treatment

更改烟草处理的默认设置

基本信息

  • 批准号:
    9207484
  • 负责人:
  • 金额:
    $ 75.07万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-02-01 至 2021-01-31
  • 项目状态:
    已结题

项目摘要

 DESCRIPTION (provided by applicant): One billion people will die from tobacco-related illnesses this century. Most health care providers, however, fail to treat tobacco dependence. This may in part be due to the treatment "default." Current treatment guidelines recommend that providers a) ask patients if they are willing to quit and b) provide cessation-focused medications and counseling only to smokers who state they are willing to quit. For other health conditions-diabetes, hypertension, asthma, and even substance abuse-the treatment default is to a) identify the health condition and b) initiate evidence-based treatment. For example, when a patient is newly diagnosed with hypertension, they aren't asked if they are `ready' to start treatment. The physician simply begins with a prescription or discussion of treatment options. As with any healthcare treatment option, patients are free to decline-they can "opt out" if they wish to refuse care. If patients do nothing, they will receive care. For tobacco users, however, the default is that they have to "opt in" to receive cessation assistance: providers ask smokers if they are willing to quit, and only offer medications and cessation support to those who say "yes". This drastically limits the reach of cessation services because, at any given encounter, only 1 in 3 smokers say they are ready to quit. As a result, few receive medications or cessation counseling. Recent studies suggest that, when provided with cessation medications and counseling, "unmotivated" smokers are as likely to quit as "motivated" smokers. Hence, there is a critical need to examine the impact of changing the treatment default on utilization and quitting. The objective of this application is to determine the impact of providing all smokers wit tobacco treatment unless they refuse it (OPT OUT) versus current practice-screening for readiness and only offering treatment to smokers who say they are ready to quit (OPT IN). The study employs an individually-randomized design, and is conducted in a tertiary care hospital. We will conduct the trial among 1,000 randomly-selected hospitalized smokers to determine the population impact of changing the treatment default, identify mediators of outcome, and determine the cost-effectiveness of this new, highly proactive approach. This is a population-based study that targets an endpoint of vital interest; applies minimal eligibility criteria to broaden generalizability; and utilizes hospital staff for interventions to ensure long-term sustainability. The study employs an innovative Baysian adaptive design to evaluate a major shift in our approach to care. If effective, this change would expand the reach of tobacco treatment from 30% to 100% of smokers.
 描述(申请人提供):本世纪将有10亿人死于与烟草有关的疾病。然而,大多数卫生保健提供者未能治疗烟草依赖。这可能部分是由于治疗的“默认”。“目前的治疗指南建议提供者a)询问患者是否愿意戒烟,B)只向那些表示愿意戒烟的吸烟者提供以戒烟为重点的药物和咨询。对于其他健康状况,如糖尿病、高血压、哮喘,甚至药物滥用,治疗默认是a)确定健康状况,B)启动循证治疗。例如,当一个病人被新诊断为高血压时,他们不会被问到是否“准备好”开始治疗。医生只是从处方或治疗方案的讨论开始。与任何医疗保健治疗方案一样,患者可以自由拒绝如果他们希望拒绝护理,他们可以“选择退出”。如果病人什么都不做,他们会得到照顾。然而,对于烟草使用者来说,默认情况是他们必须“选择”接受戒烟援助:提供者询问吸烟者, 他们愿意戒烟,只向那些说“是”的人提供药物和戒烟支持。这极大地限制了戒烟服务的范围,因为在任何特定的遭遇中,只有三分之一的吸烟者表示他们准备戒烟。因此,很少有人接受药物治疗或戒烟咨询。最近的研究表明,当提供戒烟药物和咨询时,“无动机”吸烟者和“有动机”吸烟者一样有可能戒烟。因此,迫切需要检查改变治疗默认值对利用和戒烟的影响。本申请的目的是确定向所有吸烟者提供烟草治疗(除非他们拒绝)与当前实践的影响-准备就绪筛查和仅向表示准备戒烟的吸烟者提供治疗(OPT IN)。本研究采用个体随机设计,在三级护理医院进行。我们将在1,000名随机选择的住院吸烟者中进行试验,以确定改变治疗默认值的人群影响,确定结果的介导因素,并确定这种新的高度积极主动的方法的成本效益。这是一项以人群为基础的研究,目标是至关重要的终点;应用最低资格标准以扩大普遍性;并利用医院工作人员进行干预以确保长期可持续性。该研究采用了创新的贝叶斯自适应设计来评估我们护理方法的重大转变。如果有效,这一变化将使烟草治疗的覆盖范围从30%扩大到100%。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

KIMBER P RICHTER其他文献

KIMBER P RICHTER的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('KIMBER P RICHTER', 18)}}的其他基金

Implementation Science and Equity: Administrative Core
实施科学与公平:行政核心
  • 批准号:
    10557510
  • 财政年份:
    2023
  • 资助金额:
    $ 75.07万
  • 项目类别:
Increasing Post-discharge Follow Up among Hospitalized Smokers
加强住院吸烟者的出院后随访
  • 批准号:
    8508464
  • 财政年份:
    2010
  • 资助金额:
    $ 75.07万
  • 项目类别:
Increasing Post-discharge Follow Up among Hospitalized Smokers
加强住院吸烟者的出院后随访
  • 批准号:
    8145198
  • 财政年份:
    2010
  • 资助金额:
    $ 75.07万
  • 项目类别:
Increasing Post-discharge Follow Up among Hospitalized Smokers
加强住院吸烟者的出院后随访
  • 批准号:
    8481579
  • 财政年份:
    2010
  • 资助金额:
    $ 75.07万
  • 项目类别:
Increasing Post-discharge Follow Up among Hospitalized Smokers
加强住院吸烟者的出院后随访
  • 批准号:
    8306130
  • 财政年份:
    2010
  • 资助金额:
    $ 75.07万
  • 项目类别:
Increasing Post-discharge Follow Up among Hospitalized Smokers
加强住院吸烟者的出院后随访
  • 批准号:
    8015442
  • 财政年份:
    2010
  • 资助金额:
    $ 75.07万
  • 项目类别:
Telemedicine for Smoking Cessation in Rural Primary Care
农村初级保健中戒烟的远程医疗
  • 批准号:
    7844416
  • 财政年份:
    2009
  • 资助金额:
    $ 75.07万
  • 项目类别:
Telemedicine for Smoking Cessation in Rural Primary Care
农村初级保健中戒烟的远程医疗
  • 批准号:
    7901648
  • 财政年份:
    2008
  • 资助金额:
    $ 75.07万
  • 项目类别:
Telemedicine for Smoking Cessation in Rural Primary Care
农村初级保健中戒烟的远程医疗
  • 批准号:
    7526523
  • 财政年份:
    2008
  • 资助金额:
    $ 75.07万
  • 项目类别:
Telemedicine for Smoking Cessation in Rural Primary Care
农村初级保健中戒烟的远程医疗
  • 批准号:
    7687370
  • 财政年份:
    2008
  • 资助金额:
    $ 75.07万
  • 项目类别:

相似海外基金

Bayesian Modeling and Inference for High-Dimensional Disease Mapping and Boundary Detection"
用于高维疾病绘图和边界检测的贝叶斯建模和推理”
  • 批准号:
    10568797
  • 财政年份:
    2023
  • 资助金额:
    $ 75.07万
  • 项目类别:
Bayesian modeling of multivariate mixed longitudinal responses with scale mixtures of multivariate normal distributions
具有多元正态分布尺度混合的多元混合纵向响应的贝叶斯建模
  • 批准号:
    10730714
  • 财政年份:
    2023
  • 资助金额:
    $ 75.07万
  • 项目类别:
Bayesian Modeling and Scalable Inference for Big Data Streams
大数据流的贝叶斯建模和可扩展推理
  • 批准号:
    RGPIN-2019-03962
  • 财政年份:
    2022
  • 资助金额:
    $ 75.07万
  • 项目类别:
    Discovery Grants Program - Individual
Bayesian modeling on ethical consumption and its empirical application for behavior modification
道德消费的贝叶斯模型及其在行为矫正中的实证应用
  • 批准号:
    21K18559
  • 财政年份:
    2021
  • 资助金额:
    $ 75.07万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Utilizing Bayesian modeling to improve mutational signature inference in large-scale datasets
利用贝叶斯建模改进大规模数据集中的突变特征推断
  • 批准号:
    10684720
  • 财政年份:
    2021
  • 资助金额:
    $ 75.07万
  • 项目类别:
Bayesian Modeling and Scalable Inference for Big Data Streams
大数据流的贝叶斯建模和可扩展推理
  • 批准号:
    RGPIN-2019-03962
  • 财政年份:
    2021
  • 资助金额:
    $ 75.07万
  • 项目类别:
    Discovery Grants Program - Individual
Utilizing Bayesian modeling to improve mutational signature inference in large-scale datasets
利用贝叶斯建模改进大规模数据集中的突变特征推断
  • 批准号:
    10490301
  • 财政年份:
    2021
  • 资助金额:
    $ 75.07万
  • 项目类别:
Bayesian Modeling of Mass-Spec Proteomics Data to Advance Studies of the Genetic Regulation of Proteins
质谱蛋白质组数据的贝叶斯建模推进蛋白质遗传调控的研究
  • 批准号:
    10391171
  • 财政年份:
    2021
  • 资助金额:
    $ 75.07万
  • 项目类别:
Utilizing Bayesian modeling to improve mutational signature inference in large-scale datasets
利用贝叶斯建模改进大规模数据集中的突变特征推断
  • 批准号:
    10305242
  • 财政年份:
    2021
  • 资助金额:
    $ 75.07万
  • 项目类别:
Bayesian Modeling and Scalable Inference for Big Data Streams
大数据流的贝叶斯建模和可扩展推理
  • 批准号:
    RGPIN-2019-03962
  • 财政年份:
    2020
  • 资助金额:
    $ 75.07万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了