Dynamic network computations for foraging in an uncertain environment
不确定环境中觅食的动态网络计算
基本信息
- 批准号:9149063
- 负责人:
- 金额:$ 118.74万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-30 至 2018-06-30
- 项目状态:已结题
- 来源:
- 关键词:AccountingAnimal BehaviorAnimalsAreaBehaviorBehavioralBehavioral ModelBeliefBiological Neural NetworksBrainCodeColorComplexCuesDataData AnalysesDecision MakingDimensionsDiscriminationElectric StimulationElectrophysiology (science)EnvironmentEquilibriumExhibitsFoodHippocampus (Brain)LearningLocationMacacaMeasuresMedialMemoryMental HealthModelingMonkeysMotorNetwork-basedNeuronsNeurosciencesParahippocampal GyrusPopulationPrefrontal CortexProcessPropertyPsyche structureRecurrenceResearchRewardsRiceSensorySeriesSignal TransductionSpecific qualifier valueStatistical Data InterpretationSynaptic TransmissionSystemTechniquesTestingTheoretical modelTimeTrainingUncertaintyVisualVisual CortexVisual PerceptionWireless Technologyarea V4brain dysfunctioncostentorhinal cortexflexibilityimprovedinsightneural patterningneuronal patterningnovelpublic health relevancerelating to nervous systemresearch studyresponsesensorimotor systemsensory integrationspatial memorytheoriestoolvisual stimulusway finding
项目摘要
DESCRIPTION (provided by applicant): The brain evolved complex recurrent networks to enable flexible behavior in a dynamic and uncertain world, but its computational strategies and underlying mechanisms remain poorly understood. We propose to uncover the network basis of neural computations in foraging, an ethologically relevant behavioral task that involves sensory integration, spatial navigation, memory, and complex decision-making. We will use large-scale electrical recordings from six relevant interconnected areas (visual cortical area V4, Area 7A, Entorhinal Cortex, Hippocampus, Parahippocampal gyrus, and Prefrontal Cortex) of freely behaving macaques. To track the neural network computations used in these ethologically relevant, natural tasks, we will exploit recent advances in both statistical data analysis and theories of neural computation. First, to characterize behavior, we will model relationships between task-relevant sensory, motor, and internal variables using graphical modeling. Animal behavior will be modeled in the framework of Partially Observable Markov Decision Processes (POMDP) and these models will provide predictions about which variables the animals use and how they interact. Second, once we have modeled the behaviorally relevant variables, we will use modern data analysis techniques to identify these variables from the patterns of neuronal responses, extracting the low- dimensional, task-relevant signals from the high-dimensional population activity. The time series of these low- dimensional neural representations will be used to analyze the transformation and flow of signals between different brain areas, using such measures as Directed Information. Finally, we will compare these neural analyses to predictions from the normative models of the foraging task. We hypothesize that neural representations of sensory and internal variables will exhibit the same causal and temporal relationships manifested in the behavioral model. By combining - for the first time - normative modeling, selective dimensionality reduction of neural population signals, and quantification of directed information flow, we will be able to identify the transformations within and between key brain areas that enact neural computations on complex natural tasks. The team project aims to produce a transformative view of distributed neural population coding, unifying ethologically crucial computations across multiple neural systems.
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dora Angelaki其他文献
Dora Angelaki的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dora Angelaki', 18)}}的其他基金
Computational dynamics in neural populations of freely foraging vs. restrained monkeys
自由觅食与受限制猴子神经群体的计算动力学
- 批准号:
10447347 - 财政年份:2022
- 资助金额:
$ 118.74万 - 项目类别:
Project C: Neural basis of causal inference in continuous navigation
项目 C:连续导航中因果推理的神经基础
- 批准号:
10225405 - 财政年份:2020
- 资助金额:
$ 118.74万 - 项目类别:
Project C: Neural basis of causal inference in continuous navigation
项目 C:连续导航中因果推理的神经基础
- 批准号:
10615056 - 财政年份:2020
- 资助金额:
$ 118.74万 - 项目类别:
Project C: Neural basis of causal inference in continuous navigation
项目 C:连续导航中因果推理的神经基础
- 批准号:
10400148 - 财政年份:2020
- 资助金额:
$ 118.74万 - 项目类别:
相似海外基金
Wireless CMOS device for observing real-time brain activity and animal behavior
用于观察实时大脑活动和动物行为的无线 CMOS 设备
- 批准号:
23K06786 - 财政年份:2023
- 资助金额:
$ 118.74万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Landscapes of fear in the Anthropocene: Linking predation risk and human disturbance to animal behavior and ecological outcomes
人类世的恐惧景观:将捕食风险和人类干扰与动物行为和生态结果联系起来
- 批准号:
RGPIN-2022-03096 - 财政年份:2022
- 资助金额:
$ 118.74万 - 项目类别:
Discovery Grants Program - Individual
The role of biological interactions in the evolution of animal behavior
生物相互作用在动物行为进化中的作用
- 批准号:
RGPIN-2019-06689 - 财政年份:2022
- 资助金额:
$ 118.74万 - 项目类别:
Discovery Grants Program - Individual
Development of Semi-Supervised Learning Method using Compressed Video for Real-Time Animal Behavior Analysis
使用压缩视频进行实时动物行为分析的半监督学习方法的开发
- 批准号:
22H03637 - 财政年份:2022
- 资助金额:
$ 118.74万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Landscapes of fear in the Anthropocene: Linking predation risk and human disturbance to animal behavior and ecological outcomes
人类世的恐惧景观:将捕食风险和人类干扰与动物行为和生态结果联系起来
- 批准号:
DGECR-2022-00323 - 财政年份:2022
- 资助金额:
$ 118.74万 - 项目类别:
Discovery Launch Supplement
Neural and molecular mechanisms of microbe-sensing in the control of animal behavior - Resubmission - 1
微生物传感控制动物行为的神经和分子机制 - 重新提交 - 1
- 批准号:
10315486 - 财政年份:2021
- 资助金额:
$ 118.74万 - 项目类别:
Neural and molecular mechanisms of microbe-sensing in the control of animal behavior - Resubmission - 1
微生物传感控制动物行为的神经和分子机制 - 重新提交 - 1
- 批准号:
10412977 - 财政年份:2021
- 资助金额:
$ 118.74万 - 项目类别:
REU Site: Animal Behavior in Context
REU 网站:背景下的动物行为
- 批准号:
2050311 - 财政年份:2021
- 资助金额:
$ 118.74万 - 项目类别:
Standard Grant
Molecular recording to predict cell fate decisions and animal behavior
分子记录预测细胞命运决定和动物行为
- 批准号:
10260139 - 财政年份:2021
- 资助金额:
$ 118.74万 - 项目类别:














{{item.name}}会员




