Identifying opioid response phenotypes in low back pain electronic health data
识别腰痛电子健康数据中的阿片类药物反应表型
基本信息
- 批准号:9313544
- 负责人:
- 金额:$ 10.01万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-04-01 至 2017-09-30
- 项目状态:已结题
- 来源:
- 关键词:Accident and Emergency departmentAdultAdvisory CommitteesAmericanAnatomyBiomedical ResearchClinicalClinical DataClinical TrialsCommunitiesDataData AnalysesData SetData SourcesDevelopmentDimensionsDocumentationDoseElectronic Health RecordFeedbackFoundationsFundingFutureGeneticGenomicsGoalsGoldGrantGrowthHealthHealth PersonnelHealthcareIndividualKnowledgeLeadLeftLow Back PainMapsMedicalMedicineMentorsMethodsMiningModelingNatural Language ProcessingOntologyOpioidOutcomeOutpatientsOutputPainPain ResearchPain intensityPain interferencePain managementPathway interactionsPatient CarePatient-Focused OutcomesPatientsPatternPharmaceutical PreparationsPhenotypePopulationPredictive AnalyticsPreventionProviderRecordsRegimenResearchScientistStandardizationStatistical ModelsStructureSystemTestingTextTherapeutic InterventionTrainingTranslatingTreatment EfficacyUnited StatesUnited States National Institutes of HealthValidationVisitVocabularybaseburden of illnesscareer developmentclinical careclinically relevantcohortcomputerized data processingcostdisabilitydisease phenotypeeffective therapyelectronic dataexperiencefunctional statushealth care service utilizationhealth datahigh dimensionalityimprovedindexingindividual patientnovelopioid useoutcome predictionpatient stratificationpersonalized medicinepredict clinical outcomepredictive modelingresponsesearch enginesymposiumtooltreatment response
项目摘要
Pain is the leading reason for adult outpatient and emergency department medical visits, impacting over 100
million Americans at a cost of over $600 billion dollars annually. Low back pain (LBP) represents 28% of this
health-care problem and is the leading cause of disability, both in the United States and worldwide. Opioids
are the most commonly prescribed drug class in the United States, and the majority of these prescriptions
are for LBP. Despite the broad application of opioid therapy in LBP, the phenotypes of individuals who
experience pain relief from opioid treatment have not been identified, leaving providers without clear
guidance for safe and effective therapy. Given this staggering burden of disease and health-care utilization,
clinical information regarding LBP widely populates the electronic health record (EHR), providing a valuable
data source. However, this information presently has little meaning beyond the individual patient experience
because the majority of pain-related data from the EHR is embedded in free text. Using EHR data may
provide the crucial bridge to a better understanding of LBP. Thus, the central hypothesis of this proposal is
that translating clinical experiences into discrete and analyzable data, specifically modeling opioid response
phenotypes for patients with LBP, will identify clinically relevant phenotypic treatment responses. To test this
hypothesis, this mentored career development project will adapt and apply natural language processing
(NLP), data standardization, mining, and analysis tools to specifically model opioid response phenotypes for
patients with LBP to characterize pain intensity, functional status, and pain interference with activity.
Through integrated aims, this proposal will, 1) support the annotation of LBP and opioid note corpus, and
the mapping of clinical concepts related to pain intensity, functional status, and pain interference with
activities; 2) use NLP to identify and relate relevant opioid response phenotypes in patients with LBP
in the EHR; and 3) characterize LBP phenotypes associated with opioid dose escalation. Clinical NLP uses
statistical modeling to extract and transform high dimensional clinical data, which, when developed with the
PI’s domain knowledge, creates a unique opportunity to understand LBP management, outcomes, and
therapeutic efficacy. Ultimately this foundation may be used to predict clinical outcomes and responses to
therapeutic interventions. Our long-term goal is to move beyond identifying disease phenotype profiles to
create a system to identify treatment response phenotypes. Stratifying patients based on pain intensity,
functional status, pain interference and other factors, we plan to identify potential cohorts that warrant
further study from a genetic focus. This mentored career development grant (K08) will support a clinical
expert’s adaptation of tools and training in a systematic method to allow growth toward a programmatic line
of research that is incredibly responsive to the NIH pain research agenda and can transition to independent
R01-level funding.
疼痛是成人门诊和急诊就诊的主要原因,影响100多个
每年花费超过6000亿美元。下背痛(LBP)占28%
在美国和世界范围内,这是医疗保健问题,也是残疾的主要原因。阿片
是美国最常见的处方药类别,这些处方中的大多数
对于LBP。尽管阿片类药物治疗广泛应用于LBP,但
阿片类药物治疗的疼痛缓解经验尚未确定,使提供者没有明确的
指导安全有效的治疗。鉴于疾病和保健利用的巨大负担,
关于LBP的临床信息广泛地填充了电子健康记录(EHR),提供了有价值的
数据源然而,这些信息目前除了个别患者的经验外几乎没有什么意义
因为来自EHR的大多数疼痛相关数据都嵌入在自由文本中。使用EHR数据可以
为更好地了解LBP提供了重要的桥梁。因此,这一提议的核心假设是
将临床经验转化为离散和可分析的数据,特别是模拟阿片类药物反应,
LBP患者的表型,将确定临床相关的表型治疗反应。为了验证这一
假设,这个指导职业发展项目将适应和应用自然语言处理
(NLP),数据标准化,挖掘和分析工具,以专门模拟阿片类药物反应表型,
LBP患者,以表征疼痛强度,功能状态和疼痛干扰活动。
通过整合目标,该提案将:1)支持LBP和阿片类药物笔记语料库的注释,
与疼痛强度、功能状态和疼痛干扰相关的临床概念的映射,
活动; 2)使用NLP识别LBP患者的相关阿片类反应表型并将其与之关联
在EHR中;和3)表征与阿片剂量递增相关的LBP表型。临床NLP使用
统计建模,以提取和转换高维临床数据,当与
PI的领域知识,创造了一个独特的机会,了解LBP管理,结果,
疗效最终,这一基础可用于预测临床结果和对
治疗干预。我们的长期目标是超越确定疾病表型特征,
创建一个系统来识别治疗反应表型。根据疼痛强度对患者进行分层,
功能状态,疼痛干扰和其他因素,我们计划确定潜在的队列,
从遗传学的角度进一步研究。这种指导的职业发展补助金(K08)将支持临床
专家以系统的方法调整工具和培训,使其朝着计划路线发展
研究是令人难以置信的响应NIH疼痛研究议程,并可以过渡到独立的
R01级融资。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MEREDITH C. B. ADAMS其他文献
MEREDITH C. B. ADAMS的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MEREDITH C. B. ADAMS', 18)}}的其他基金
MIRHIQL Resource Center for Improving Quality of Life with Chronic Pain (MRC)
MIRHIQL 改善慢性疼痛生活质量资源中心 (MRC)
- 批准号:
10705887 - 财政年份:2023
- 资助金额:
$ 10.01万 - 项目类别:
COVID-19 Pandemic Mitigation, Community Economic and Social Vulnerability, and Opioid Use Disorder
COVID-19 流行病缓解、社区经济和社会脆弱性以及阿片类药物使用障碍
- 批准号:
10653238 - 财政年份:2022
- 资助金额:
$ 10.01万 - 项目类别:
WF DISC: Navigating Data Solutions for Chronic Pain and Opioid Use Disorder
WF DISC:探索慢性疼痛和阿片类药物使用障碍的数据解决方案
- 批准号:
10587594 - 财政年份:2022
- 资助金额:
$ 10.01万 - 项目类别:
WF DISC: Navigating Data Solutions for Chronic Pain and Opioid Use Disorder
WF DISC:慢性疼痛和阿片类药物使用障碍的数据解决方案导航
- 批准号:
10708945 - 财政年份:2022
- 资助金额:
$ 10.01万 - 项目类别:
Wake Forest IMPOWR Dissemination Education and Coordination Center (IDEA-CC)
维克森林 IMPOWR 传播教育和协调中心 (IDEA-CC)
- 批准号:
10601172 - 财政年份:2022
- 资助金额:
$ 10.01万 - 项目类别:
Wake Forest IMPOWR Dissemination Education and Coordination Center (IDEA-CC)
维克森林 IMPOWR 传播教育和协调中心 (IDEA-CC)
- 批准号:
10665746 - 财政年份:2021
- 资助金额:
$ 10.01万 - 项目类别:
Wake Forest IMPOWR Dissemination Education and Coordination Center (IDEA-CC)
维克森林 IMPOWR 传播教育和协调中心 (IDEA-CC)
- 批准号:
10378786 - 财政年份:2021
- 资助金额:
$ 10.01万 - 项目类别:
Wake Forest IMPOWR Dissemination Education and Coordination Center (IDEA-CC)
维克森林 IMPOWR 传播教育和协调中心 (IDEA-CC)
- 批准号:
10866836 - 财政年份:2021
- 资助金额:
$ 10.01万 - 项目类别:
Wake Forest IMPOWR Dissemination Education and Coordination Center (IDEA-CC)
维克森林 IMPOWR 传播教育和协调中心 (IDEA-CC)
- 批准号:
10593312 - 财政年份:2021
- 资助金额:
$ 10.01万 - 项目类别:
Identifying opioid response phenotypes in low back pain electronic health data
识别腰痛电子健康数据中的阿片类药物反应表型
- 批准号:
9897632 - 财政年份:2017
- 资助金额:
$ 10.01万 - 项目类别:
相似海外基金
Co-designing a lifestyle, stop-vaping intervention for ex-smoking, adult vapers (CLOVER study)
为戒烟的成年电子烟使用者共同设计生活方式、戒烟干预措施(CLOVER 研究)
- 批准号:
MR/Z503605/1 - 财政年份:2024
- 资助金额:
$ 10.01万 - 项目类别:
Research Grant
RAPID: Affective Mechanisms of Adjustment in Diverse Emerging Adult Student Communities Before, During, and Beyond the COVID-19 Pandemic
RAPID:COVID-19 大流行之前、期间和之后不同新兴成人学生社区的情感调整机制
- 批准号:
2402691 - 财政年份:2024
- 资助金额:
$ 10.01万 - 项目类别:
Standard Grant
Early Life Antecedents Predicting Adult Daily Affective Reactivity to Stress
早期生活经历预测成人对压力的日常情感反应
- 批准号:
2336167 - 财政年份:2024
- 资助金额:
$ 10.01万 - 项目类别:
Standard Grant
Elucidation of Adult Newt Cells Regulating the ZRS enhancer during Limb Regeneration
阐明成体蝾螈细胞在肢体再生过程中调节 ZRS 增强子
- 批准号:
24K12150 - 财政年份:2024
- 资助金额:
$ 10.01万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Migrant Youth and the Sociolegal Construction of Child and Adult Categories
流动青年与儿童和成人类别的社会法律建构
- 批准号:
2341428 - 财政年份:2024
- 资助金额:
$ 10.01万 - 项目类别:
Standard Grant
Understanding how platelets mediate new neuron formation in the adult brain
了解血小板如何介导成人大脑中新神经元的形成
- 批准号:
DE240100561 - 财政年份:2024
- 资助金额:
$ 10.01万 - 项目类别:
Discovery Early Career Researcher Award
Laboratory testing and development of a new adult ankle splint
新型成人踝关节夹板的实验室测试和开发
- 批准号:
10065645 - 财政年份:2023
- 资助金额:
$ 10.01万 - 项目类别:
Collaborative R&D
Usefulness of a question prompt sheet for onco-fertility in adolescent and young adult patients under 25 years old.
问题提示表对于 25 岁以下青少年和年轻成年患者的肿瘤生育力的有用性。
- 批准号:
23K09542 - 财政年份:2023
- 资助金额:
$ 10.01万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Identification of new specific molecules associated with right ventricular dysfunction in adult patients with congenital heart disease
鉴定与成年先天性心脏病患者右心室功能障碍相关的新特异性分子
- 批准号:
23K07552 - 财政年份:2023
- 资助金额:
$ 10.01万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Issue identifications and model developments in transitional care for patients with adult congenital heart disease.
成人先天性心脏病患者过渡护理的问题识别和模型开发。
- 批准号:
23K07559 - 财政年份:2023
- 资助金额:
$ 10.01万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




