Identifying opioid response phenotypes in low back pain electronic health data

识别腰痛电子健康数据中的阿片类药物反应表型

基本信息

项目摘要

Pain is the leading reason for adult outpatient and emergency department medical visits, impacting over 100 million Americans at a cost of over $600 billion dollars annually. Low back pain (LBP) represents 28% of this health-care problem and is the leading cause of disability, both in the United States and worldwide. Opioids are the most commonly prescribed drug class in the United States, and the majority of these prescriptions are for LBP. Despite the broad application of opioid therapy in LBP, the phenotypes of individuals who experience pain relief from opioid treatment have not been identified, leaving providers without clear guidance for safe and effective therapy. Given this staggering burden of disease and health-care utilization, clinical information regarding LBP widely populates the electronic health record (EHR), providing a valuable data source. However, this information presently has little meaning beyond the individual patient experience because the majority of pain-related data from the EHR is embedded in free text. Using EHR data may provide the crucial bridge to a better understanding of LBP. Thus, the central hypothesis of this proposal is that translating clinical experiences into discrete and analyzable data, specifically modeling opioid response phenotypes for patients with LBP, will identify clinically relevant phenotypic treatment responses. To test this hypothesis, this mentored career development project will adapt and apply natural language processing (NLP), data standardization, mining, and analysis tools to specifically model opioid response phenotypes for patients with LBP to characterize pain intensity, functional status, and pain interference with activity. Through integrated aims, this proposal will, 1) support the annotation of LBP and opioid note corpus, and the mapping of clinical concepts related to pain intensity, functional status, and pain interference with activities; 2) use NLP to identify and relate relevant opioid response phenotypes in patients with LBP in the EHR; and 3) characterize LBP phenotypes associated with opioid dose escalation. Clinical NLP uses statistical modeling to extract and transform high dimensional clinical data, which, when developed with the PI’s domain knowledge, creates a unique opportunity to understand LBP management, outcomes, and therapeutic efficacy. Ultimately this foundation may be used to predict clinical outcomes and responses to therapeutic interventions. Our long-term goal is to move beyond identifying disease phenotype profiles to create a system to identify treatment response phenotypes. Stratifying patients based on pain intensity, functional status, pain interference and other factors, we plan to identify potential cohorts that warrant further study from a genetic focus. This mentored career development grant (K08) will support a clinical expert’s adaptation of tools and training in a systematic method to allow growth toward a programmatic line of research that is incredibly responsive to the NIH pain research agenda and can transition to independent R01-level funding.
疼痛是成人门诊和急诊科就诊的首要原因,影响了100多人 百万美国人,每年花费超过6000亿美元。腰背痛(LBP)占28% 这是医疗保健问题,也是美国和全世界残疾的主要原因。阿片类药物 是美国最常见的处方药类别,这些处方中的大多数 是给伦敦金融服务公司的。尽管阿片类药物治疗在LBP中得到了广泛应用,但那些 阿片类药物治疗的疼痛缓解经验尚未确定,这使得提供者没有明确 指导安全有效的治疗。鉴于这种令人震惊的疾病负担和医疗保健利用, 有关LBP的临床信息广泛存在于电子健康记录(EHR)中,提供了有价值的 数据源。然而,这些信息目前除了个别患者的经历之外几乎没有什么意义。 因为来自电子病历的大部分疼痛相关数据都嵌入了自由文本中。使用EHR数据可能会 为更好地理解LBP提供了重要的桥梁。因此,这一提议的中心假设是 将临床经验转化为离散和可分析的数据,特别是对阿片类药物的反应进行建模 LBP患者的表型,将确定临床相关的表型治疗反应。为了测试这一点 假设,这个有指导的职业发展项目将适应和应用自然语言处理 (NLP)、数据标准化、挖掘和分析工具,以对阿片类药物反应表型进行专门建模 评估LBP患者的疼痛强度、功能状态以及疼痛对活动的干扰。 通过整合的AIMS,这项提议将:1)支持LBP和阿片类音符语料库的注释,以及 与疼痛强度、功能状态和疼痛干扰相关的临床概念图 活动;2)使用NLP识别和关联LBP患者的相关阿片反应表型 在EHR中;以及3)表征与阿片类药物剂量增加相关的LBP表型。NLP的临床应用 用于提取和转换高维临床数据的统计建模,当使用 PI的领域知识创造了一个了解LBP管理、结果和 治疗效果。最终,这一基础可用于预测临床结果和对 治疗性干预。我们的长期目标是超越识别疾病表型特征,而是 建立一个识别治疗反应表型的系统。根据疼痛强度对患者进行分层, 功能状态、疼痛干扰和其他因素,我们计划确定潜在的队列 从遗传学的角度进一步研究。这项受指导的职业发展补助金(K08)将支持临床 专家对工具的调整和系统方法的培训,以使增长朝着规划方向发展 对NIH疼痛研究议程做出令人难以置信的反应,并可以过渡到独立的研究 R01级资金。

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Chronic Pain Management in General and Hospital Practice
  • DOI:
    10.1007/978-981-15-2933-7
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    K. Shimoji;A. Nader;W. Hamann;•. A. Nader;Y. Yokota;S. Kurokawa
  • 通讯作者:
    K. Shimoji;A. Nader;W. Hamann;•. A. Nader;Y. Yokota;S. Kurokawa
Consensus practice guidelines on interventions for cervical spine (facet) joint pain from a multispecialty international working group.
  • DOI:
    10.1136/rapm-2021-103031
  • 发表时间:
    2022-01
  • 期刊:
  • 影响因子:
    5.1
  • 作者:
    Hurley RW;Adams MCB;Barad M;Bhaskar A;Bhatia A;Chadwick A;Deer TR;Hah J;Hooten WM;Kissoon NR;Lee DW;Mccormick Z;Moon JY;Narouze S;Provenzano DA;Schneider BJ;van Eerd M;Van Zundert J;Wallace MS;Wilson SM;Zhao Z;Cohen SP
  • 通讯作者:
    Cohen SP
The world needs our science: broadening the research pipeline in anesthesiology.
Evaluation of electronic recruitment efforts of primary care providers as research subjects during the COVID-19 pandemic.
  • DOI:
    10.1186/s12875-022-01705-y
  • 发表时间:
    2022-04-28
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

MEREDITH C. B. ADAMS其他文献

MEREDITH C. B. ADAMS的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('MEREDITH C. B. ADAMS', 18)}}的其他基金

MIRHIQL Resource Center for Improving Quality of Life with Chronic Pain (MRC)
MIRHIQL 改善慢性疼痛生活质量资源中心 (MRC)
  • 批准号:
    10705887
  • 财政年份:
    2023
  • 资助金额:
    $ 18.44万
  • 项目类别:
COVID-19 Pandemic Mitigation, Community Economic and Social Vulnerability, and Opioid Use Disorder
COVID-19 流行病缓解、社区经济和社会脆弱性以及阿片类药物使用障碍
  • 批准号:
    10653238
  • 财政年份:
    2022
  • 资助金额:
    $ 18.44万
  • 项目类别:
WF DISC: Navigating Data Solutions for Chronic Pain and Opioid Use Disorder
WF DISC:探索慢性疼痛和阿片类药物使用障碍的数据解决方案
  • 批准号:
    10587594
  • 财政年份:
    2022
  • 资助金额:
    $ 18.44万
  • 项目类别:
WF DISC: Navigating Data Solutions for Chronic Pain and Opioid Use Disorder
WF DISC:慢性疼痛和阿片类药物使用障碍的数据解决方案导航
  • 批准号:
    10708945
  • 财政年份:
    2022
  • 资助金额:
    $ 18.44万
  • 项目类别:
Wake Forest IMPOWR Dissemination Education and Coordination Center (IDEA-CC)
维克森林 IMPOWR 传播教育和协调中心 (IDEA-CC)
  • 批准号:
    10601172
  • 财政年份:
    2022
  • 资助金额:
    $ 18.44万
  • 项目类别:
Wake Forest IMPOWR Dissemination Education and Coordination Center (IDEA-CC)
维克森林 IMPOWR 传播教育和协调中心 (IDEA-CC)
  • 批准号:
    10665746
  • 财政年份:
    2021
  • 资助金额:
    $ 18.44万
  • 项目类别:
Wake Forest IMPOWR Dissemination Education and Coordination Center (IDEA-CC)
维克森林 IMPOWR 传播教育和协调中心 (IDEA-CC)
  • 批准号:
    10378786
  • 财政年份:
    2021
  • 资助金额:
    $ 18.44万
  • 项目类别:
Wake Forest IMPOWR Dissemination Education and Coordination Center (IDEA-CC)
维克森林 IMPOWR 传播教育和协调中心 (IDEA-CC)
  • 批准号:
    10866836
  • 财政年份:
    2021
  • 资助金额:
    $ 18.44万
  • 项目类别:
Wake Forest IMPOWR Dissemination Education and Coordination Center (IDEA-CC)
维克森林 IMPOWR 传播教育和协调中心 (IDEA-CC)
  • 批准号:
    10593312
  • 财政年份:
    2021
  • 资助金额:
    $ 18.44万
  • 项目类别:
Identifying opioid response phenotypes in low back pain electronic health data
识别腰痛电子健康数据中的阿片类药物反应表型
  • 批准号:
    9313544
  • 财政年份:
    2017
  • 资助金额:
    $ 18.44万
  • 项目类别:

相似海外基金

Co-designing a lifestyle, stop-vaping intervention for ex-smoking, adult vapers (CLOVER study)
为戒烟的成年电子烟使用者共同设计生活方式、戒烟干预措施(CLOVER 研究)
  • 批准号:
    MR/Z503605/1
  • 财政年份:
    2024
  • 资助金额:
    $ 18.44万
  • 项目类别:
    Research Grant
Early Life Antecedents Predicting Adult Daily Affective Reactivity to Stress
早期生活经历预测成人对压力的日常情感反应
  • 批准号:
    2336167
  • 财政年份:
    2024
  • 资助金额:
    $ 18.44万
  • 项目类别:
    Standard Grant
RAPID: Affective Mechanisms of Adjustment in Diverse Emerging Adult Student Communities Before, During, and Beyond the COVID-19 Pandemic
RAPID:COVID-19 大流行之前、期间和之后不同新兴成人学生社区的情感调整机制
  • 批准号:
    2402691
  • 财政年份:
    2024
  • 资助金额:
    $ 18.44万
  • 项目类别:
    Standard Grant
Migrant Youth and the Sociolegal Construction of Child and Adult Categories
流动青年与儿童和成人类别的社会法律建构
  • 批准号:
    2341428
  • 财政年份:
    2024
  • 资助金额:
    $ 18.44万
  • 项目类别:
    Standard Grant
Elucidation of Adult Newt Cells Regulating the ZRS enhancer during Limb Regeneration
阐明成体蝾螈细胞在肢体再生过程中调节 ZRS 增强子
  • 批准号:
    24K12150
  • 财政年份:
    2024
  • 资助金额:
    $ 18.44万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Understanding how platelets mediate new neuron formation in the adult brain
了解血小板如何介导成人大脑中新神经元的形成
  • 批准号:
    DE240100561
  • 财政年份:
    2024
  • 资助金额:
    $ 18.44万
  • 项目类别:
    Discovery Early Career Researcher Award
RUI: Evaluation of Neurotrophic-Like properties of Spaetzle-Toll Signaling in the Developing and Adult Cricket CNS
RUI:评估发育中和成年蟋蟀中枢神经系统中 Spaetzle-Toll 信号传导的神经营养样特性
  • 批准号:
    2230829
  • 财政年份:
    2023
  • 资助金额:
    $ 18.44万
  • 项目类别:
    Standard Grant
Usefulness of a question prompt sheet for onco-fertility in adolescent and young adult patients under 25 years old.
问题提示表对于 25 岁以下青少年和年轻成年患者的肿瘤生育力的有用性。
  • 批准号:
    23K09542
  • 财政年份:
    2023
  • 资助金额:
    $ 18.44万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Identification of new specific molecules associated with right ventricular dysfunction in adult patients with congenital heart disease
鉴定与成年先天性心脏病患者右心室功能障碍相关的新特异性分子
  • 批准号:
    23K07552
  • 财政年份:
    2023
  • 资助金额:
    $ 18.44万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Issue identifications and model developments in transitional care for patients with adult congenital heart disease.
成人先天性心脏病患者过渡护理的问题识别和模型开发。
  • 批准号:
    23K07559
  • 财政年份:
    2023
  • 资助金额:
    $ 18.44万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了