Engineered salivary gland tissue chips
工程唾液腺组织芯片
基本信息
- 批准号:9405187
- 负责人:
- 金额:$ 77万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-08-01 至 2019-07-31
- 项目状态:已结题
- 来源:
- 关键词:Acinar CellAdhesivesAffectAmylasesBenchmarkingBiochemicalBiological PreservationCapsid ProteinsCell CountCell SurvivalCell physiologyCellsCharacteristicsChronicCouplingCrosslinkerCuesDNA DamageDataDependenceDevelopmentDiagnosisDuct (organ) structureDuctal Epithelial CellElastomersEncapsulatedEngineeringExhibitsExtracellular Matrix ProteinsFDA approvedGelGeneticGlandGoalsHead and Neck CancerHumanHydrogelsImmune systemIn VitroInjectableLabelLengthLibrariesMaintenanceMatrix MetalloproteinasesMicrobubblesModelingMoldsMusNatureNerveOpticsOutcomeParacrine CommunicationPatientsPeptidesPharmaceutical PreparationsPharmacological TreatmentPhasePhenotypePlasmaPolymersPreventionProlactinProteinsRadiationRadiation ToleranceRadiation induced damageRadiation therapyRadiation-Protective AgentsRadioprotectionResolutionSalivaSalivarySalivary Gland TissueSalivary GlandsSignal TransductionSliceStaining methodStainsStem cellsStructureSystemTechnologyTestingTherapeuticTissue MicroarrayTissuesXerostomiaautocrinebasebiomaterial compatibilitycholinergicchromatin immunoprecipitationdensitydrug efficacyethylene glycolhead and neck cancer patienthigh throughput screeninghuman tissueimprovedin vivoirradiationmimeticsmouse modelparacrinepolydimethylsiloxaneradiosensitiveregenerativescreeningsecretory proteinself assemblystemtool
项目摘要
Abstract: For more than 550,000 patients annually diagnosed with head and neck cancers worldwide, severe
loss of salivary gland function (xerostomia) is an unavoidable outcome of radiation therapy. There are
presently no reliable and safe pharmacologic treatments for the resolution or prevention of radiation-induced
xerostomia. Efforts to study radiosensitivity to discover effective radioprotective and regenerative strategies
have been hampered by the inability to culture salivary gland mimetics in vitro, due to loss of secretory acinar
cell phenotype. The principal milestone of this proposal is to engineer functional human salivary gland tissue
chips to overcome this obstacle. Our labs have pioneered the use of hydrogel encapsulation to culture salivary
gland cells in vitro. We have successfully demonstrated salivary gland cell survival up to 1 month post-
encapsulation. Furthermore, cells organize into structures with apicobasal polarity and express secretory
acinar markers, including Mist1. Although these data are promising, secretory marker expression is reduced
compared to the native gland. Furthermore, the macroscale nature of hydrogels precludes their high-
throughput use. Thus, we will utilize our microbubble (MB) array technology as a high-throughput, modular
platform for the tissue chips. MBs are micron-scale spherical cavities molded in polydimethylsiloxane (PDMS).
MBs have the advantage of length scales and curvatures similar to the secretory acinar unit of glands,
providing a niche that promotes cell-cell contact and the concentration autocrine and paracrine factors that
have been shown to enhance tissue assembly. Furthermore, MBs can be integrated with other
microphysiological systems such as endothelial, nerve, and immune system chips. During the UG3 phase of
this project, the go/no-go criteria will be the use of the MB platform to develop human gland tissue mimetics
capable of long-term secretory function. Specifically for UG3, Aim 1 will use genetically labeled mouse acinar
and duct cells to identify culture characteristics that maximize gland tissue mimetic function. Acinar and duct
cell seeding ratios and densities will be varied in ‘blank’, extracellular matrix protein-functionalized, and in
hydrogels all within MBs. Aim 2 (UG3) will validate the ability of human salivary gland cells to cellularly
organize and maintain function in our previously developed macrogels and in within hydrogels in MBs, similarly
to mouse cells in Aim 1. Our goal is to demonstrate functional human gland mimetic development in MB arrays
by end of UG3. If successful, the UH3 phase will investigate hydrogel microenvironmental cues to further
promote gland mimetic organization and function. Finally, Aim 3 will demonstrate the utility of gland mimetics
by screening FDA-approved drugs to identify effective radioprotective agents. These compounds will be
retroductally injected into mice to validate radioprotective potential. Successful development of salivary tissue
chips will be transformative; by enabling in vitro analysis of functional gland mimetics, our ability to pursue
therapeutic strategies, radioprotective and regenerative, will be dramatically improved.!
摘要:在全球范围内,每年有超过55万名患者被诊断为头颈部癌症
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Danielle S. Benoit其他文献
Danielle S. Benoit的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Danielle S. Benoit', 18)}}的其他基金
Tissue Engineering Strategies to Revitalize Allografts
振兴同种异体移植物的组织工程策略
- 批准号:
10830613 - 财政年份:2023
- 资助金额:
$ 77万 - 项目类别:
Using hiPSCs to develop physiologically-relevant outer retina tissue mimetics
使用 hiPSC 开发生理相关的外视网膜组织模拟物
- 批准号:
10467753 - 财政年份:2022
- 资助金额:
$ 77万 - 项目类别:
Tendon TRAP: Targeted Therapeutic Delivery to Enhance Tendon Healing
Tendon TRAP:有针对性的治疗交付以增强肌腱愈合
- 批准号:
10461486 - 财政年份:2022
- 资助金额:
$ 77万 - 项目类别:
Bone-targeted polymer therapeutics for non-union fracture healing
用于骨不连骨折愈合的骨靶向聚合物治疗
- 批准号:
10681217 - 财政年份:2022
- 资助金额:
$ 77万 - 项目类别:
Tendon TRAP: Targeted Therapeutic Delivery to Enhance Tendon Healing
Tendon TRAP:有针对性的治疗交付以增强肌腱愈合
- 批准号:
10612076 - 财政年份:2022
- 资助金额:
$ 77万 - 项目类别:
Bone-targeted polymer therapeutics for nonunion fracture healing
用于骨不连骨折愈合的骨靶向聚合物治疗
- 批准号:
10371267 - 财政年份:2022
- 资助金额:
$ 77万 - 项目类别:
Bone-targeted polymer therapeutics for non-union fracture healing
用于骨不连骨折愈合的骨靶向聚合物治疗
- 批准号:
10733942 - 财政年份:2022
- 资助金额:
$ 77万 - 项目类别:
Using hiPSCs to develop physiologically-relevant outer retina tissue mimetics
使用 hiPSC 开发生理相关的外视网膜组织模拟物
- 批准号:
10709483 - 财政年份:2022
- 资助金额:
$ 77万 - 项目类别:
hiPSC-derived tissue mimetics of the retina blood barrier
hiPSC 衍生的视网膜血屏障组织模拟物
- 批准号:
10080730 - 财政年份:2020
- 资助金额:
$ 77万 - 项目类别:
相似海外基金
I-Corps: Translation Potential of Peptidic Ensembles as Novel Bio-adhesives
I-Corps:肽整体作为新型生物粘合剂的转化潜力
- 批准号:
2409620 - 财政年份:2024
- 资助金额:
$ 77万 - 项目类别:
Standard Grant
Architectural design of active adhesives
活性粘合剂的结构设计
- 批准号:
2403716 - 财政年份:2024
- 资助金额:
$ 77万 - 项目类别:
Standard Grant
Design of non-swellable adhesives for brain surgery using cyclodextrin inclusion polymer
使用环糊精包合物聚合物脑外科不可溶胀粘合剂的设计
- 批准号:
23H01718 - 财政年份:2023
- 资助金额:
$ 77万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Meta-material adhesives for improved performance and functionalisation of bondlines
超材料粘合剂可提高粘合层的性能和功能化
- 批准号:
EP/W019450/1 - 财政年份:2023
- 资助金额:
$ 77万 - 项目类别:
Fellowship
Light-propelled dental adhesives with enhanced bonding capability
具有增强粘合能力的光驱动牙科粘合剂
- 批准号:
10741660 - 财政年份:2023
- 资助金额:
$ 77万 - 项目类别:
DMREF: Accelerating the Design of Adhesives with Nanoscale Control of Thermomechanical Properties
DMREF:通过热机械性能的纳米级控制加速粘合剂的设计
- 批准号:
2323317 - 财政年份:2023
- 资助金额:
$ 77万 - 项目类别:
Continuing Grant
Mag-Cure: A novel method for magnetically induced bonding and de-bonding of thermoset adhesives in the Automotive Industry
Mag-Cure:汽车行业中热固性粘合剂磁感应粘合和脱粘的新方法
- 批准号:
10062336 - 财政年份:2023
- 资助金额:
$ 77万 - 项目类别:
Collaborative R&D
Biodegradable, Biocompatible Pressure Sensitive Adhesives
可生物降解、生物相容性压敏粘合剂
- 批准号:
10677869 - 财政年份:2022
- 资助金额:
$ 77万 - 项目类别:
Poly(glycerol carbonate) pressure sensitive adhesives for the in vivo closure of alveolar pleural fistulae
用于体内闭合肺泡胸膜瘘的聚(甘油碳酸酯)压敏粘合剂
- 批准号:
10746743 - 财政年份:2022
- 资助金额:
$ 77万 - 项目类别:
Mechanisms of Blood Clot Adhesion and the Design of New Wet Adhesives
血凝块粘附机制及新型湿粘合剂的设计
- 批准号:
RGPIN-2018-04918 - 财政年份:2022
- 资助金额:
$ 77万 - 项目类别:
Discovery Grants Program - Individual