Micro-TMS Technology for Ultra-Focal Brain Stimulation
用于超聚焦大脑刺激的微型 TMS 技术
基本信息
- 批准号:9358422
- 负责人:
- 金额:$ 76.57万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-26 至 2020-06-30
- 项目状态:已结题
- 来源:
- 关键词:Adverse effectsAmplifiersAreaAutomobile DrivingBrainBrain imagingCharacteristicsCustomDeep Brain StimulationDepositionDevelopmentDigit structureDimensionsElectromagneticsElementsEmerging TechnologiesFeasibility StudiesFingersGeneral HospitalsGenerationsGeometryHandHeadHeatingHelmetHumanImplantIndividualIonsIsraelLaboratoriesMagnetic Resonance ImagingMagnetismMapsMassachusettsMeasuresMechanicsMedical centerMethodologyMotorMotor CortexMotor Evoked PotentialsMuscleNanostructuresNanotechnologyNervous system structureNeuronsNeurosciencesOutcomeOutputPenetrationPeripheralPhysiologic pulseResearchResolutionSafetySensoryShapesSkinSomatosensory CortexStimulusStructureSurfaceSystemTechniquesTechnologyTestingTherapeuticTimeTissuesTranscranial magnetic stimulationUniversitiesValidationanalogattenuationbasecortex mappingcostcraniumdesignelectric fieldfinger movementmillimeterminiaturizenanofabricationnanoscalenew technologyrelating to nervous systemsafety testingsensory cortexsimulationtoolultra high resolutionvibration
项目摘要
Abstract
Micro-magnetic stimulation (μMS) is an emerging technology with a great promise to revolutionize therapeutic
stimulation of human nervous system. Originally developed to stimulation single neurons, μMS uses ultra-
conductive neuron-size coils that are capable of carrying current pulses large enough to elicit neural activation
by means of magnetic induction. Depending on their dimension, μMS probes are capable of inducing neuronal
activation in small areas limited to a few hundred microns to a few millimeters, rendering the technology a unique
tool for ultra-focal brain stimulation. Our laboratory of Analogue Brain Imaging (ABILAB) at Massachusetts
General Hospital is one of the frontrunners of advancing μMS research. We were the first group demonstrating
the feasibility of using μMS probes implanted in deep brain structures to deliver therapeutic stimulation with
effects analogous to the state-of-the-art deep brain stimulation. Joining forces with Berenson-Allen Center for
Noninvasive Brain Stimulation at Beth Israel Deaconess Medical Center, we propose to adapt μMS technology
to develop the first generation of miniaturized TMS (μTMS) elements for ultra-focal non-invasive brain
stimulation. Taking advantage of the latest advancements in nano-fabrication, it is now possible to manufacture
highly-conductive long traces with cross-sections as small as a few square microns. By carefully depositing
hundreds of turns of such nano-structures in an annulus surface area less than a centimeter square, we will
generate electric fields large enough to penetrate the skull and stimulate the cortex, yet not inducing discomfort
at the skin level. Such advancement will have a transformative impact on the applicability of non-invasive brain
stimulation, as it allows for a well-controlled stimulating and mapping of the human cortex with an unprecedented
resolution. Moreover, because of their ultra-small size, μTMS elements can be integrated in multi-channel whole-
head conformal arrays that will fit in a human head size helmet, enabling for the first time, the simultaneous
multifocal stimulation of the human brain.
摘要
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
GIORGIO BONMASSAR其他文献
GIORGIO BONMASSAR的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('GIORGIO BONMASSAR', 18)}}的其他基金
Dense Array Image compatible EEG for enhanced neonatal care
密集阵列图像兼容脑电图,用于增强新生儿护理
- 批准号:
10001797 - 财政年份:2017
- 资助金额:
$ 76.57万 - 项目类别:
Deep Brain Stimulation System for Magnetic Resonance Imaging
用于磁共振成像的深部脑刺激系统
- 批准号:
8439752 - 财政年份:2013
- 资助金额:
$ 76.57万 - 项目类别:
The Virtual Patient Simulator of Patients with Deep Brain Stimulation Implants
深部脑刺激植入患者的虚拟患者模拟器
- 批准号:
8583055 - 财政年份:2013
- 资助金额:
$ 76.57万 - 项目类别:
The Virtual Patient Simulator of Patients with Deep Brain Stimulation Implants
深部脑刺激植入患者的虚拟患者模拟器
- 批准号:
8711437 - 财政年份:2013
- 资助金额:
$ 76.57万 - 项目类别:
Deep Brain Stimulation System for Magnetic Resonance Imaging
用于磁共振成像的深部脑刺激系统
- 批准号:
8605940 - 财政年份:2013
- 资助金额:
$ 76.57万 - 项目类别:
Intracranial Micro Magnetic Stimulation of the Frontal Eye Field in Monkeys
猴子额眼场的颅内微磁刺激
- 批准号:
7962459 - 财政年份:2010
- 资助金额:
$ 76.57万 - 项目类别:
CONCURRENT EEG AND FMRI STUDIES IN HUMAN BRAIN ACTIVITY
人脑活动的脑电图和 FMRI 同步研究
- 批准号:
7563692 - 财政年份:2007
- 资助金额:
$ 76.57万 - 项目类别:
Simultaneous fMRI and Electrophysiology in Visual System
视觉系统中的同步功能磁共振成像和电生理学
- 批准号:
6853294 - 财政年份:2005
- 资助金额:
$ 76.57万 - 项目类别:
Simultaneous fMRI and Electrophysiology in Visual System
视觉系统中的同步功能磁共振成像和电生理学
- 批准号:
6998423 - 财政年份:2005
- 资助金额:
$ 76.57万 - 项目类别:
相似海外基金
SBIR Phase II: Thermally-optimized power amplifiers for next-generation telecommunication and radar
SBIR 第二阶段:用于下一代电信和雷达的热优化功率放大器
- 批准号:
2335504 - 财政年份:2024
- 资助金额:
$ 76.57万 - 项目类别:
Cooperative Agreement
Interferometric and Multiband optical Parametric Amplifiers for Communications (IMPAC)
用于通信的干涉式和多频带光学参量放大器 (IMPAC)
- 批准号:
EP/X031918/1 - 财政年份:2024
- 资助金额:
$ 76.57万 - 项目类别:
Fellowship
Josephson Parametric Amplifiers using CVD graphene junctions
使用 CVD 石墨烯结的约瑟夫森参量放大器
- 批准号:
EP/Y003152/1 - 财政年份:2024
- 资助金额:
$ 76.57万 - 项目类别:
Research Grant
Semiconductor-based Terahertz Traveling Wave Amplifiers for Monolithic Integration
用于单片集成的半导体太赫兹行波放大器
- 批准号:
2329940 - 财政年份:2023
- 资助金额:
$ 76.57万 - 项目类别:
Standard Grant
OPTIME-PA: Optimal MMIC Design of E-Band Power Amplifiers for Satcom using Dedicated Measurements and Non-Linear Modelling
OPTIME-PA:使用专用测量和非线性建模的卫星通信 E 频段功率放大器的最佳 MMIC 设计
- 批准号:
10075892 - 财政年份:2023
- 资助金额:
$ 76.57万 - 项目类别:
Collaborative R&D
Optical Glass Amplifiers for High Capacity Networks
用于高容量网络的光学玻璃放大器
- 批准号:
538379-2018 - 财政年份:2022
- 资助金额:
$ 76.57万 - 项目类别:
Collaborative Research and Development Grants
Investigating the function of ZU5 domain-containing proteins as amplifiers of caspase activation
研究含有 ZU5 结构域的蛋白质作为 caspase 激活放大器的功能
- 批准号:
10681326 - 财政年份:2022
- 资助金额:
$ 76.57万 - 项目类别:
Investigating the function of ZU5 domain-containing proteins as amplifiers of caspase activation
研究含有 ZU5 结构域的蛋白质作为 caspase 激活放大器的功能
- 批准号:
10621402 - 财政年份:2022
- 资助金额:
$ 76.57万 - 项目类别:
Broadband Digital Doherty Amplifiers for Sub-6 GHz 5G wireless Applications
适用于 6 GHz 以下 5G 无线应用的宽带数字 Doherty 放大器
- 批准号:
573452-2022 - 财政年份:2022
- 资助金额:
$ 76.57万 - 项目类别:
Alliance Grants
TALENT – Tapered AmpLifiErs for quaNtum Technologies
人才 — 量子技术的锥形放大器
- 批准号:
10032436 - 财政年份:2022
- 资助金额:
$ 76.57万 - 项目类别:
Collaborative R&D