A General Framework to Account for Outcome Reporting Bias in Systematic Reviews
解释系统评价中结果报告偏差的总体框架
基本信息
- 批准号:9765388
- 负责人:
- 金额:$ 33.66万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-08 至 2021-08-31
- 项目状态:已结题
- 来源:
- 关键词:AccountingAreaBenefits and RisksClinical TrialsCommunitiesComputer softwareDataData SetDatabasesDecision MakingDevelopmentEffectiveness of InterventionsEnsureEpidemiologistEventEvidence Based MedicineEvidence based practiceGlaucomaGoalsGuidelinesHealthcareInvestigationJointsLeadLiteratureMedicalMeta-AnalysisMethodsModelingNatureOutcomePerformancePoliciesProceduresPropertyProtocols documentationPublic DomainsPublishingRandomized Controlled TrialsRecommendationReportingResearchResearch PersonnelSafetySamplingSolidStatistical MethodsTestingTimeWorkbasecomparative effectivenessdesigneffectiveness researchhandbookhospital readmissionnovelprogramsresponsesimulationstandard caresystematic reviewuser friendly softwareuser-friendly
项目摘要
Project Summary
Comparative effectiveness research (CER) relies fundamentally on accurate and timely assessment of the
benefits and risks of different treatment options. Empirical evidence suggests that a median of 35% of efficacy
and 50% of safety outcomes per parallel group trials were incompletely reported, and statistically significant
outcomes had a higher likelihood of being fully reported compared to non-significant outcomes, both for
efficacy and safety. Such a bias is referred to as outcome reporting bias (ORB), i.e., “the selective reporting of
some outcomes but not others, depending on the nature and direction of the results (i.e., missing certain
outcomes).” Selective reporting can invalidate results from meta-analyses. As acknowledged in the Cochrane
handbook “Statistical methods to detect within-study selective reporting (i.e., outcome-reporting bias) are, as
yet, not well developed” (chapter 8.14.2, version 5.0.2), there is a critical need to develop methods specifically
accounting for ORB.
In response to PA-16-160, the overall goal of this proposal is to develop, test and evaluate new statistical
methods and user-friendly software to account for ORB in multivariate and network meta-analyses. In this
proposal, we will focus on: (1) To propose and evaluate new methods for quantifying the evidence of ORB, to
adjusting for ORB, and to develop a procedure of sensitivity analysis under ORB in multivariate meta-analysis.
(2) To generalize the methods in Aim 1 to network meta-analyses (where more than 2 treatments are
compared simultaneously), and to propose methods to evaluate the evidence consistency. And (3) To develop
publicly available, user-friendly and well-documented software and apply the proposed methods to research
data sets. We will use carefully designed simulation studies to investigate the performance of the proposed
methods, apply the proposed methods to multiple existing databases, and develop statistical software for wider
research communities.
We propose to perform empirical assessment of the strengths and weaknesses of these methods through
carefully designed simulation studies and, more importantly, applications to (network) meta-analyses of clinical
trials with multivariate outcomes. Completion of these three aims in this proposal will directly benefit the CER
program by providing state-of-the art methods implemented in user-friendly R package that will be made freely
available to the public. This has the potential to catalyze the development of many new methods, amplifying
the impact of our project.
项目摘要
比较有效性研究(CER)从根本上依赖于准确和及时的评估,
不同治疗方案的风险和益处。经验证据表明,35%的有效性中位数
每个平行组试验中50%的安全性结局报告不完整,且具有统计学显著性
结果有更高的可能性被充分报告相比,非重大成果,无论是
有效性和安全性。这种偏倚被称为结果报告偏倚(ORB),即,“选择性报道
某些结果,而不是其他结果,这取决于结果的性质和方向(即,缺少某些
成果)”。选择性报告可能会使荟萃分析的结果无效。正如科克伦中所承认的
手册“检测研究内选择性报告的统计方法(即,结果报告偏倚),如
然而,还没有得到很好的发展”(第8.14.2章,第5.0.2版),迫切需要制定具体的方法,
关于ORB
作为对PA-16-160的回应,本提案的总体目标是开发、测试和评估新的统计
方法和用户友好的软件来解释多变量和网络荟萃分析中的ORB。在这
我们的工作重点是:(1)提出并评估新的ORB证据量化方法,
对ORB进行调整,并建立一个在ORB下进行多元Meta分析的敏感性分析程序。
(2)将目标1中的方法推广到网络荟萃分析(其中超过2种治疗方法
同时进行比较),并提出评估证据一致性的方法。(3)发展
公开可用的,用户友好的和有据可查的软件,并将所提出的方法应用于研究
数据集。我们将使用精心设计的模拟研究,以调查拟议的性能
方法,将所提出的方法应用于多个现有的数据库,并开发更广泛的统计软件,
研究社区。
我们建议对这些方法的优点和缺点进行实证评估,
精心设计的模拟研究,更重要的是,应用于(网络)临床荟萃分析
多变量结局的试验。完成本提案中的这三个目标将直接使CER受益
程序通过提供最先进的方法,在用户友好的R包中实现,将免费提供
提供给公众。这有可能催化许多新方法的发展,放大
我们项目的影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yong Chen其他文献
Yong Chen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yong Chen', 18)}}的其他基金
ClinEX - Clinical Evidence Extraction, Representation, and Appraisal
ClinEX - 临床证据提取、表示和评估
- 批准号:
10754029 - 财政年份:2023
- 资助金额:
$ 33.66万 - 项目类别:
Surrogate Augmented Deep Predictive Learning for Retinopathy of Prematurity
早产儿视网膜病变的替代增强深度预测学习
- 批准号:
10740289 - 财政年份:2023
- 资助金额:
$ 33.66万 - 项目类别:
Development of Magnetic Resonance Fingerprinting (MRF) to Assess Response to Neoadjuvant Chemotherapy in Breast Cancer
开发磁共振指纹图谱 (MRF) 来评估乳腺癌新辅助化疗的反应
- 批准号:
10713097 - 财政年份:2023
- 资助金额:
$ 33.66万 - 项目类别:
Development of Magnetic Resonance Fingerprinting in Kidney for Evaluation of Renal Cell Carcinoma
肾脏磁共振指纹图谱用于肾细胞癌评估的发展
- 批准号:
10522570 - 财政年份:2022
- 资助金额:
$ 33.66万 - 项目类别:
Development of Magnetic Resonance Fingerprinting in Kidney for Evaluation of Renal Cell Carcinoma
肾脏磁共振指纹图谱用于肾细胞癌评估的发展
- 批准号:
10707150 - 财政年份:2022
- 资助金额:
$ 33.66万 - 项目类别:
PheBC: bias correction methods for EHR derived phenotype
PheBC:EHR 衍生表型的偏差校正方法
- 批准号:
10839649 - 财政年份:2021
- 资助金额:
$ 33.66万 - 项目类别:
PheBC: bias correction methods for EHR derived phenotype
PheBC:EHR 衍生表型的偏差校正方法
- 批准号:
10471166 - 财政年份:2021
- 资助金额:
$ 33.66万 - 项目类别:
CICADA: clinical informatics and computational approaches for drug-repositioning of AD/ADRD
CICADA:AD/ADRD 药物重新定位的临床信息学和计算方法
- 批准号:
10476677 - 财政年份:2021
- 资助金额:
$ 33.66万 - 项目类别:
TRiPOD: Toward Reusable Phenotypes in Observational Data for AD/ADRD - managing definitions and correcting bias
TRiPOD:在 AD/ADRD 观察数据中实现可重复使用的表型 - 管理定义和纠正偏差
- 批准号:
10642888 - 财政年份:2021
- 资助金额:
$ 33.66万 - 项目类别:
TRiPOD: Toward Reusable Phenotypes in Observational Data for AD/ADRD - managing definitions and correcting bias
TRiPOD:在 AD/ADRD 观察数据中实现可重复使用的表型 - 管理定义和纠正偏差
- 批准号:
10279554 - 财政年份:2021
- 资助金额:
$ 33.66万 - 项目类别:
相似国自然基金
层出镰刀菌氮代谢调控因子AreA 介导伏马菌素 FB1 生物合成的作用机理
- 批准号:2021JJ40433
- 批准年份:2021
- 资助金额:0.0 万元
- 项目类别:省市级项目
寄主诱导梢腐病菌AreA和CYP51基因沉默增强甘蔗抗病性机制解析
- 批准号:32001603
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
AREA国际经济模型的移植.改进和应用
- 批准号:18870435
- 批准年份:1988
- 资助金额:2.0 万元
- 项目类别:面上项目
相似海外基金
Onboarding Rural Area Mathematics and Physical Science Scholars
农村地区数学和物理科学学者的入职
- 批准号:
2322614 - 财政年份:2024
- 资助金额:
$ 33.66万 - 项目类别:
Standard Grant
TRACK-UK: Synthesized Census and Small Area Statistics for Transport and Energy
TRACK-UK:交通和能源综合人口普查和小区域统计
- 批准号:
ES/Z50290X/1 - 财政年份:2024
- 资助金额:
$ 33.66万 - 项目类别:
Research Grant
Wide-area low-cost sustainable ocean temperature and velocity structure extraction using distributed fibre optic sensing within legacy seafloor cables
使用传统海底电缆中的分布式光纤传感进行广域低成本可持续海洋温度和速度结构提取
- 批准号:
NE/Y003365/1 - 财政年份:2024
- 资助金额:
$ 33.66万 - 项目类别:
Research Grant
Point-scanning confocal with area detector
点扫描共焦与区域检测器
- 批准号:
534092360 - 财政年份:2024
- 资助金额:
$ 33.66万 - 项目类别:
Major Research Instrumentation
Collaborative Research: Scalable Manufacturing of Large-Area Thin Films of Metal-Organic Frameworks for Separations Applications
合作研究:用于分离应用的大面积金属有机框架薄膜的可扩展制造
- 批准号:
2326714 - 财政年份:2024
- 资助金额:
$ 33.66万 - 项目类别:
Standard Grant
Collaborative Research: Scalable Manufacturing of Large-Area Thin Films of Metal-Organic Frameworks for Separations Applications
合作研究:用于分离应用的大面积金属有机框架薄膜的可扩展制造
- 批准号:
2326713 - 财政年份:2024
- 资助金额:
$ 33.66万 - 项目类别:
Standard Grant
Unlicensed Low-Power Wide Area Networks for Location-based Services
用于基于位置的服务的免许可低功耗广域网
- 批准号:
24K20765 - 财政年份:2024
- 资助金额:
$ 33.66万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
- 批准号:
2427233 - 财政年份:2024
- 资助金额:
$ 33.66万 - 项目类别:
Standard Grant
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
- 批准号:
2427232 - 财政年份:2024
- 资助金额:
$ 33.66万 - 项目类别:
Standard Grant
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
- 批准号:
2427231 - 财政年份:2024
- 资助金额:
$ 33.66万 - 项目类别:
Standard Grant