Targeted Gene Insertion by Directed Evolution of ΦC31 Integrase for Therapeutic Gene Editing
通过 κC31 整合酶定向进化进行靶向基因插入,用于治疗性基因编辑
基本信息
- 批准号:9906961
- 负责人:
- 金额:$ 22.49万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-02-01 至 2020-07-31
- 项目状态:已结题
- 来源:
- 关键词:Animal ModelBacteriaBacterial Attachment SiteBacterial GenomeBacteriophagesBasic ScienceBioinformaticsBiologicalBiologyCRISPR therapeuticsCRISPR/Cas technologyCell LineCellsClinicClustered Regularly Interspaced Short Palindromic RepeatsComplexCytidine DeaminaseDNADNA RepairDevelopmentDirected Molecular EvolutionDiseaseElementsEngineeringEnhancersEnvironmentEnzymesErythroidEvolutionExhibitsFamilyGenerationsGenesGeneticGenetic DiseasesGenetic RecombinationGenomic medicineGenomicsHematopoietic stem cellsHemophilia AHumanHuman Cell LineHuman GenomeIntegraseKnock-inKnock-outKnowledgeLeadLibrariesLocationMammalian CellMapsMediatingMutagenesisNational Institute of General Medical SciencesNonhomologous DNA End JoiningOrganismPainPaperPhage Attachment SitePhasePredispositionProteinsRecurrenceReporterReporter GenesReportingResearch PersonnelSiteSmall Business Innovation Research GrantSmall Business Technology Transfer ResearchSpeedStreptomycesSystemT-LymphocyteTechniquesTechnologyTherapeuticTransgenesValidationVariantWorkbasebeta Globinbeta Thalassemiacell typedirect applicationds-DNAempoweredgene therapygene transfer vectorhematopoietic differentiationimprovedin vivointegration sitemembermouse genomenovelnucleasepromoterrecombinaserepairedscreeningstable cell linetechnological innovationtherapeutic genetherapeutic transgenetooltranscription activator-like effector nucleaseszinc finger nuclease
项目摘要
Pain Point: Applied StemCell (ASC) is engineering ΦC31 integrase through directed evolution to
establish the ability to site-specifically integrate exogenous DNA into the human genome. Currently, there are
no gene editing technologies on the market that allow for efficient, site-specific insertion of large transgenes.
CRISPR/Cas9, and other nuclease-based technologies – including TALENs and Zinc Finger Nucleases (ZFNs)
– only have DNA cutting functionality, and therefore rely upon endogenous host machinery for DNA repair and
transgene insertion by non-homologous end joining (NHEJ), microhomology-mediated end joining (MMEJ),
and homology directed repair (HDR). As such, the efficiency of transgene insertion is limited, and depends
strongly upon the quantity of delivered donor template, which can be especially difficult to control, in vivo. In
addition, nuclease technologies may facilitate adverse mutagenesis within the human genome, and several
papers have recently reported unexpected levels of off-target mutagenesis from the Cas9 system.
Technological Innovation: We are developing an integrase-mediated knock-in technology platform that
will allow for site-specific, large fragment transgene insertion in the human genome (hTARGATT™). ΦC31
integrase was originally discovered to carry-out site-specific recombination between a phage attachment site,
attP, and a bacterial attachment site, attB, in the host, Streptomyces. We, and others, have observed that
ΦC31 integrase is capable of inserting sequences up to 22kb into an engineered attP site within the mouse
genome at efficiencies as high as 40%. Seeing these promising results, researchers began searching for attP-
similar sites (so-called pseudo-sites) in human genome, hoping that ΦC31 integrase would also be able to
mediate site-specific transgene insertion into the human genome. However, while several pseudo-recognition
sites have been identified, the integration efficiencies at these sites are too low to enable efficient therapeutic
gene editing. Therefore, we are currently engineering the integrase protein to facilitate efficient and site-
specific recombination between an exogenous genetic construct and selected sites within the human genome.
To do so, we have employed bioinformatics analysis, along with deep knowledge of integrase biology, to
identify putative attP-like sites within human genome. We have currently developed a novel, mammalian cell-
based directed evolution system, and are co-evolving ΦC31 integrase and attB sequences to create a first-in-
class integrase system for human therapeutic gene editing.
Broader Impacts of the Technology include (a) the development of potentially curative gene
therapies for genetic diseases including β-thalassemia, sick-cell disease, hemophilia, and many others; (b)
direct application of the hTARGATT™ technology for human cell line gene editing in basic research and
bioproduction; and (c) utilization of our mammalian library screening platform for directed evolution of other
biological elements, such as promoters, enhancers, and other proteins.
痛点:Applied StemCell(ASC)正在通过定向进化工程化Φ C31整合酶,
建立将外源DNA位点特异性整合到人类基因组中的能力。目前有
市场上没有基因编辑技术,可以有效地,位点特异性地插入大型转基因。
CRISPR/Cas9和其他基于核酸酶的技术-包括TALEN和锌指核酸酶(ZFN)
- 仅具有DNA切割功能,因此依赖于内源性宿主机制进行DNA修复,
通过非同源末端连接(NHEJ),微同源介导的末端连接(MMEJ),
同源定向修复(HDR)。因此,转基因插入的效率是有限的,并且取决于
这强烈地取决于体内递送的供体模板的量,这可能特别难以控制。在
此外,核酸酶技术可以促进人类基因组内的不利诱变,并且几种核酸酶技术可以促进人类基因组内的不利诱变。
最近有论文报道了来自Cas9系统的出乎意料水平的脱靶诱变。
技术创新:我们正在开发整合酶介导的敲入技术平台,
将允许位点特异性的大片段转基因插入人类基因组(hTARGATT ™)。公司简介
最初发现整合酶在噬菌体附着位点之间进行位点特异性重组,
attP和宿主链霉菌中的细菌附着位点attB。我们和其他人注意到,
Φ C31整合酶能够将高达22kb的序列插入到小鼠内的工程化attP位点中
基因组效率高达40%。看到这些有希望的结果,研究人员开始寻找attP-
在人类基因组中的类似位点(所谓的假位点),希望Φ C31整合酶也能够
介导位点特异性转基因插入人类基因组。然而,虽然一些伪识别
虽然已经鉴定了这些位点,但是在这些位点的整合效率太低而不能实现有效的治疗。
基因编辑因此,我们目前正在工程化整合酶蛋白,以促进高效和位点-
外源基因构建体与人类基因组内选定位点之间的特异性重组。
为此,我们采用了生物信息学分析,沿着整合酶生物学的深入知识,
鉴定人类基因组中推定attP样位点。我们最近开发了一种新的哺乳动物细胞-
基于定向进化系统,并共同进化Φ C31整合酶和attB序列,以创建一个首次在
类整合酶系统用于人类治疗性基因编辑。
该技术的更广泛影响包括:(a)开发潜在的治疗基因
用于遗传疾病的疗法,包括β-地中海贫血、镰状细胞病、血友病和许多其他疾病;(B)
在基础研究中直接应用hTARGATT ™技术进行人类细胞系基因编辑,
生物生产;以及(c)利用我们的哺乳动物库筛选平台进行其他基因的定向进化
生物元件,如启动子、增强子和其他蛋白质。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ruby Yanru Chen-Tsai其他文献
Ruby Yanru Chen-Tsai的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ruby Yanru Chen-Tsai', 18)}}的其他基金
Targeted Gene Insertion by Directed Evolution of æC31 Integrase for Therapeutic Gene Editing
通过 αC31 整合酶定向进化进行靶向基因插入,用于治疗性基因编辑
- 批准号:
10177096 - 财政年份:2020
- 资助金额:
$ 22.49万 - 项目类别:
Targeted Gene Insertion by Directed Evolution of æC31 Integrase for Therapeutic Gene Editing
通过 αC31 整合酶定向进化进行靶向基因插入,用于治疗性基因编辑
- 批准号:
10227267 - 财政年份:2020
- 资助金额:
$ 22.49万 - 项目类别:
Development of novel rat models for site-specific transgene integration
开发用于位点特异性转基因整合的新型大鼠模型
- 批准号:
8643473 - 财政年份:2014
- 资助金额:
$ 22.49万 - 项目类别:
相似国自然基金
Segmented Filamentous Bacteria激活宿主免疫系统抑制其拮抗菌 Enterobacteriaceae维持菌群平衡及其机制研究
- 批准号:81971557
- 批准年份:2019
- 资助金额:65.0 万元
- 项目类别:面上项目
电缆细菌(Cable bacteria)对水体沉积物有机污染的响应与调控机制
- 批准号:51678163
- 批准年份:2016
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Did light dictate ancient diversification of phylogeny and cell structure in the domain bacteria?
光是否决定了细菌领域的古代系统发育和细胞结构的多样化?
- 批准号:
24H00582 - 财政年份:2024
- 资助金额:
$ 22.49万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Cell Wall Formation in Rod Shaped Bacteria
杆状细菌细胞壁的形成
- 批准号:
BB/Y003187/1 - 财政年份:2024
- 资助金额:
$ 22.49万 - 项目类别:
Research Grant
DNA replication dynamics in living bacteria
活细菌中的 DNA 复制动态
- 批准号:
23K25843 - 财政年份:2024
- 资助金额:
$ 22.49万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Conference: Symposium on the Immune System of Bacteria
会议:细菌免疫系统研讨会
- 批准号:
2349218 - 财政年份:2024
- 资助金额:
$ 22.49万 - 项目类别:
Standard Grant
DYNBIOTICS - Understanding the dynamics of antibiotics transport in individual bacteria
DYNBIOTICS - 了解抗生素在单个细菌中转运的动态
- 批准号:
EP/Y023528/1 - 财政年份:2024
- 资助金额:
$ 22.49万 - 项目类别:
Research Grant
NPBactID - Differential binding of peptoid functionalized nanoparticles to bacteria for identifying specific strains
NPBactID - 类肽功能化纳米粒子与细菌的差异结合,用于识别特定菌株
- 批准号:
EP/Y029542/1 - 财政年份:2024
- 资助金额:
$ 22.49万 - 项目类别:
Fellowship
Assembly of the matrix that supports bacteria living in biofilms
支持生活在生物膜中的细菌的基质的组装
- 批准号:
2468773 - 财政年份:2024
- 资助金额:
$ 22.49万 - 项目类别:
Studentship
Manipulating two-component systems to activate cryptic antibiotic pathways in filamentous actinomycete bacteria
操纵双组分系统激活丝状放线菌中的神秘抗生素途径
- 批准号:
BB/Y005724/1 - 财政年份:2024
- 资助金额:
$ 22.49万 - 项目类别:
Research Grant
Engineering Streptomyces bacteria for the sustainable manufacture of antibiotics
工程化链霉菌用于抗生素的可持续生产
- 批准号:
BB/Y007611/1 - 财政年份:2024
- 资助金额:
$ 22.49万 - 项目类别:
Research Grant
CAREER: Interfacial behavior of motile bacteria at structured liquid crystal interfaces
职业:运动细菌在结构化液晶界面的界面行为
- 批准号:
2338880 - 财政年份:2024
- 资助金额:
$ 22.49万 - 项目类别:
Continuing Grant














{{item.name}}会员




