Targeted Gene Insertion by Directed Evolution of ΦC31 Integrase for Therapeutic Gene Editing

通过 κC31 整合酶定向进化进行靶向基因插入,用于治疗性基因编辑

基本信息

  • 批准号:
    9906961
  • 负责人:
  • 金额:
    $ 22.49万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-02-01 至 2020-07-31
  • 项目状态:
    已结题

项目摘要

Pain Point: Applied StemCell (ASC) is engineering ΦC31 integrase through directed evolution to establish the ability to site-specifically integrate exogenous DNA into the human genome. Currently, there are no gene editing technologies on the market that allow for efficient, site-specific insertion of large transgenes. CRISPR/Cas9, and other nuclease-based technologies – including TALENs and Zinc Finger Nucleases (ZFNs) – only have DNA cutting functionality, and therefore rely upon endogenous host machinery for DNA repair and transgene insertion by non-homologous end joining (NHEJ), microhomology-mediated end joining (MMEJ), and homology directed repair (HDR). As such, the efficiency of transgene insertion is limited, and depends strongly upon the quantity of delivered donor template, which can be especially difficult to control, in vivo. In addition, nuclease technologies may facilitate adverse mutagenesis within the human genome, and several papers have recently reported unexpected levels of off-target mutagenesis from the Cas9 system. Technological Innovation: We are developing an integrase-mediated knock-in technology platform that will allow for site-specific, large fragment transgene insertion in the human genome (hTARGATT™). ΦC31 integrase was originally discovered to carry-out site-specific recombination between a phage attachment site, attP, and a bacterial attachment site, attB, in the host, Streptomyces. We, and others, have observed that ΦC31 integrase is capable of inserting sequences up to 22kb into an engineered attP site within the mouse genome at efficiencies as high as 40%. Seeing these promising results, researchers began searching for attP- similar sites (so-called pseudo-sites) in human genome, hoping that ΦC31 integrase would also be able to mediate site-specific transgene insertion into the human genome. However, while several pseudo-recognition sites have been identified, the integration efficiencies at these sites are too low to enable efficient therapeutic gene editing. Therefore, we are currently engineering the integrase protein to facilitate efficient and site- specific recombination between an exogenous genetic construct and selected sites within the human genome. To do so, we have employed bioinformatics analysis, along with deep knowledge of integrase biology, to identify putative attP-like sites within human genome. We have currently developed a novel, mammalian cell- based directed evolution system, and are co-evolving ΦC31 integrase and attB sequences to create a first-in- class integrase system for human therapeutic gene editing. Broader Impacts of the Technology include (a) the development of potentially curative gene therapies for genetic diseases including β-thalassemia, sick-cell disease, hemophilia, and many others; (b) direct application of the hTARGATT™ technology for human cell line gene editing in basic research and bioproduction; and (c) utilization of our mammalian library screening platform for directed evolution of other biological elements, such as promoters, enhancers, and other proteins.
痛点:应用干细胞(ASC)是工程ΦC31整合酶通过定向进化到

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ruby Yanru Chen-Tsai其他文献

Ruby Yanru Chen-Tsai的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ruby Yanru Chen-Tsai', 18)}}的其他基金

Targeted Gene Insertion by Directed Evolution of æC31 Integrase for Therapeutic Gene Editing
通过 αC31 整合酶定向进化进行靶向基因插入,用于治疗性基因编辑
  • 批准号:
    10177096
  • 财政年份:
    2020
  • 资助金额:
    $ 22.49万
  • 项目类别:
Targeted Gene Insertion by Directed Evolution of æC31 Integrase for Therapeutic Gene Editing
通过 αC31 整合酶定向进化进行靶向基因插入,用于治疗性基因编辑
  • 批准号:
    10227267
  • 财政年份:
    2020
  • 资助金额:
    $ 22.49万
  • 项目类别:
Development of novel rat models for site-specific transgene integration
开发用于位点特异性转基因整合的新型大鼠模型
  • 批准号:
    8643473
  • 财政年份:
    2014
  • 资助金额:
    $ 22.49万
  • 项目类别:
Animal Tumor Models
动物肿瘤模型
  • 批准号:
    8181101
  • 财政年份:
    2010
  • 资助金额:
    $ 22.49万
  • 项目类别:
Transgenic and Knockout Mouse Resource
转基因和基因敲除小鼠资源
  • 批准号:
    7438466
  • 财政年份:
    2007
  • 资助金额:
    $ 22.49万
  • 项目类别:
Transgenic and Knockout Mouse Resource
转基因和基因敲除小鼠资源
  • 批准号:
    7826899
  • 财政年份:
  • 资助金额:
    $ 22.49万
  • 项目类别:
Transgenic and Knockout Mouse Resource
转基因和基因敲除小鼠资源
  • 批准号:
    7623562
  • 财政年份:
  • 资助金额:
    $ 22.49万
  • 项目类别:
Animal Tumor Models
动物肿瘤模型
  • 批准号:
    8475453
  • 财政年份:
  • 资助金额:
    $ 22.49万
  • 项目类别:
Animal Tumor Models
动物肿瘤模型
  • 批准号:
    8375597
  • 财政年份:
  • 资助金额:
    $ 22.49万
  • 项目类别:
Animal Tumor Models
动物肿瘤模型
  • 批准号:
    8281621
  • 财政年份:
  • 资助金额:
    $ 22.49万
  • 项目类别:

相似国自然基金

Segmented Filamentous Bacteria激活宿主免疫系统抑制其拮抗菌 Enterobacteriaceae维持菌群平衡及其机制研究
  • 批准号:
    81971557
  • 批准年份:
    2019
  • 资助金额:
    65.0 万元
  • 项目类别:
    面上项目
电缆细菌(Cable bacteria)对水体沉积物有机污染的响应与调控机制
  • 批准号:
    51678163
  • 批准年份:
    2016
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目

相似海外基金

Cell Wall Formation in Rod Shaped Bacteria
杆状细菌细胞壁的形成
  • 批准号:
    BB/Y003187/1
  • 财政年份:
    2024
  • 资助金额:
    $ 22.49万
  • 项目类别:
    Research Grant
Did light dictate ancient diversification of phylogeny and cell structure in the domain bacteria?
光是否决定了细菌领域的古代系统发育和细胞结构的多样化?
  • 批准号:
    24H00582
  • 财政年份:
    2024
  • 资助金额:
    $ 22.49万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Conference: Symposium on the Immune System of Bacteria
会议:细菌免疫系统研讨会
  • 批准号:
    2349218
  • 财政年份:
    2024
  • 资助金额:
    $ 22.49万
  • 项目类别:
    Standard Grant
DNA replication dynamics in living bacteria
活细菌中的 DNA 复制动态
  • 批准号:
    23K25843
  • 财政年份:
    2024
  • 资助金额:
    $ 22.49万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
DYNBIOTICS - Understanding the dynamics of antibiotics transport in individual bacteria
DYNBIOTICS - 了解抗生素在单个细菌中转运的动态
  • 批准号:
    EP/Y023528/1
  • 财政年份:
    2024
  • 资助金额:
    $ 22.49万
  • 项目类别:
    Research Grant
NPBactID - Differential binding of peptoid functionalized nanoparticles to bacteria for identifying specific strains
NPBactID - 类肽功能化纳米粒子与细菌的差异结合,用于识别特定菌株
  • 批准号:
    EP/Y029542/1
  • 财政年份:
    2024
  • 资助金额:
    $ 22.49万
  • 项目类别:
    Fellowship
Assembly of the matrix that supports bacteria living in biofilms
支持生活在生物膜中的细菌的基质的组装
  • 批准号:
    2468773
  • 财政年份:
    2024
  • 资助金额:
    $ 22.49万
  • 项目类别:
    Studentship
Manipulating two-component systems to activate cryptic antibiotic pathways in filamentous actinomycete bacteria
操纵双组分系统激活丝状放线菌中的神秘抗生素途径
  • 批准号:
    BB/Y005724/1
  • 财政年份:
    2024
  • 资助金额:
    $ 22.49万
  • 项目类别:
    Research Grant
Engineering Streptomyces bacteria for the sustainable manufacture of antibiotics
工程化链霉菌用于抗生素的可持续生产
  • 批准号:
    BB/Y007611/1
  • 财政年份:
    2024
  • 资助金额:
    $ 22.49万
  • 项目类别:
    Research Grant
CAREER: Interfacial behavior of motile bacteria at structured liquid crystal interfaces
职业:运动细菌在结构化液晶界面的界面行为
  • 批准号:
    2338880
  • 财政年份:
    2024
  • 资助金额:
    $ 22.49万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了