Development of multivalent, ultrapotent nanobody cocktails for SARS-CoV-2 neutralization
开发用于中和 SARS-CoV-2 的多价、超强纳米抗体混合物
基本信息
- 批准号:10444442
- 负责人:
- 金额:$ 76.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-02-09 至 2022-02-18
- 项目状态:已结题
- 来源:
- 关键词:2019-nCoVAerosolsAffinityAftercareAntibodiesBindingBiological AvailabilityBiomedical EngineeringCOVID-19COVID-19 outbreakCOVID-19 therapeuticsCOVID-19 treatmentCellsClinicalClinical ResearchClinical TrialsCommunitiesComputer softwareCoronavirusDepositionDevelopmentDiagnostic ReagentDoseDrug StorageEpitope MappingEpitopesEventFutureGenotypeGoalsHamstersHumanImmunoglobulin FragmentsImmunoglobulin GInfectionInhalationInnovative TherapyLungMicrobeModelingMutationNebulizerPharmaceutical PreparationsPrimatesProductionPropertyProteomicsPulmonary PathologyReportingResearchResistanceResolutionRespiratory SystemSARS-CoV-2 infectionSARS-CoV-2 variantScienceStructureSystemTechnologyTherapeuticTherapeutic AgentsTranslationsViralViral AntibodiesViral Load resultViral PneumoniaVirusaerosolizedbaseclinical applicationcostcost effectivedesigndrug developmentdrug qualityefficacy evaluationemerging pathogenflexibilityglobal healthimprovedin vivoinsightinterdisciplinary approachinterestmultidisciplinarynanobodiesnovelnovel therapeuticsnovel vaccinespandemic diseasepathogenpreclinical efficacypreclinical evaluationpreventprotein foldingrational designreceptor bindingrespiratory virusstructural biologytherapeutic candidatetherapeutically effectivetranslational potentialvariants of concern
项目摘要
PROJECT SUMMARY/ABSTRACT
The outbreak of COVID-19 has severely impacted global health and the economy. Cost-effective, highly
efficacious therapeutics are urgently needed. Camelid VHH antibodies or nanobodies (Nbs) are small, highly
stable, easily bioengineered, and can be rapidly and economically manufactured from microbes. They are
highly robust and are flexible for administration, including possible delivery by nebulization. Together these
unique properties of Nbs make their uses against respiratory viruses such as SARS-CoV-2 especially
appealing.
We recently developed a disruptive proteomic technology for large-scale identification of multi-epitope, drug-
quality Nbs (Xiang et. al, Cell Systems. 2021). Using this technology, we identified > 8,000 high-affinity Nbs for
the SARS-CoV-2 spike (S) receptor-binding domain (RBD) including Nbs that target highly neutralizing
epitopes with sub-pM affinities and can neutralize SARS-CoV-2 at sub-ng/ml concentrations, which are
unprecedented for antiviral antibody fragments. Structural proteomics revealed multiple distinct epitopes and
potential neutralization mechanisms. Bioengineering of multi-epitope and multivalent constructs improved the
potency to below 0.1 ng/ml (Xiang, et. al, Science. 2020). Most recently, we have demonstrated the high
preclinical efficacy of an ultrapotent and stable trimeric Nb construct (PiN-21) for inhalation treatment of SARS-
CoV-2 infection in a sensitive COVID-19 model (Nambulli, et. al, Science Advances. 2021). Intranasal delivery
of PiN-21 at 0.6 mg/kg substantially reduces viral burdens in both airways. Critically, aerosol delivery of PiN-21
at 0.2 mg/kg decreases lung viral titers by 6-logs, minimizing lung pathology post-infection and preventing viral
pneumonia. Combined with the marked stability and low production cost, this innovative therapy may provide a
convenient and cost-effective option to mitigate the evolving pandemic and future events.
In the revision, we aim to identify and characterize highly potent Nbs that are highly resistant to the variants of
concern (VOCs) of SARS-CoV-2, investigate the neutralization mechanisms by structural approaches, and
develop ultrapotent Nb constructs into safe and effective therapeutics. Our central hypothesis is that Nbs can
be bioengineered into multivalent and ultrapotent forms to resist the mutational escape and the variants of
concerns (VOCs) of SARS-CoV-2.
Completion of our proposed studies will lead to cost-effective and convenient COVID-19 therapeutic
candidates for translation into clinical trials. High-resolution structural studies will provide critical insights into
how Nbs uniquely target the virus for high-affinity binding and neutralization. Critically, this project will serve as
the testbed of our multidisciplinary platform to develop potent therapeutic and diagnostic reagents for future
pandemics caused by coronaviruses or other pathogens.
项目摘要/摘要
Covid-19的爆发严重影响了全球卫生和经济。具有成本效益,高度
迫切需要有效的治疗学。 Camelid VHH抗体或纳米型(NB)很小,高度
稳定,易于生物工程,并且可以通过微生物迅速和经济生产。他们是
高度鲁棒性并且可以灵活地进行给药,包括可能通过雾化传递。在一起
NBS的独特特性可用于针对呼吸道病毒,例如SARS-COV-2
吸引人。
我们最近开发了一种破坏性的蛋白质组学技术,用于大规模鉴定多诊断,药物 -
质量NBS(Xiang等,CellSystems。2021)。使用此技术,我们确定了> 8,000个高亲和力NB
SARS-COV-2尖峰(S)受体结合域(RBD),包括靶向高度中和的NB
具有子PM亲和力的表位,可以以亚Ng/ml浓度中和SARS-COV-2,
前所未有的抗病毒抗体片段。结构蛋白质组学揭示了多个不同的表位和
潜在的中和机制。多主质和多价结构的生物工程改进了
低于0.1 ng/ml的效力(Xiang等,Science。2020)。最近,我们已经证明了高
超容量和稳定的三聚体NB构建体(PIN-21)吸入SARS-的临床前功效
COV-2感染在敏感的Covid-19模型中(Nambulli等,科学进展,2021年)。鼻内递送
在0.6 mg/kg时的PIN-21大大减轻了两种气道的病毒负担。至关重要的是,PIN-21的气溶胶输送
以0.2 mg/kg的速度减少肺部病毒滴度,通过6型log降低感染后的肺病理并预防病毒
肺炎。结合明显的稳定性和低生产成本,这种创新疗法可能会提供
方便且具有成本效益的选择,以减轻不断发展的大流行和未来事件。
在修订中,我们旨在识别和表征高度有效的NB,这些NB高度抗性
SARS-COV-2的关注(VOC),通过结构方法研究中和机制,并
将超能力的NB结构发展为安全有效的治疗剂。我们的中心假设是NB可以
将生物工程变成多价和超副本形式,以抵抗突变逃逸和变体
SARS-COV-2的担忧(VOC)。
我们提出的研究的完成将导致具有成本效益且方便的COVID-19
候选人转化为临床试验。高分辨率的结构研究将为您提供关键的见解
NBS如何将病毒靶向高亲和力结合和中和。至关重要的是,这个项目将作为
我们的多学科平台的测试床,以开发未来有效的治疗和诊断试剂
由冠状病毒或其他病原体引起的大流传学。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
William Paul Duprex其他文献
William Paul Duprex的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('William Paul Duprex', 18)}}的其他基金
Administrative Supplement for Upgrading the University of Pittsburgh Regional Biocontainment Laboratory within The Center for Vaccine Research
升级匹兹堡大学疫苗研究中心区域生物防护实验室的行政补充
- 批准号:
10631339 - 财政年份:2022
- 资助金额:
$ 76.9万 - 项目类别:
Upgrading the University of Pittsburgh Regional Biocontainment Laboratory within The Center for Vaccine Research
升级疫苗研究中心内的匹兹堡大学区域生物防护实验室
- 批准号:
10394474 - 财政年份:2021
- 资助金额:
$ 76.9万 - 项目类别:
Shifting a Paradigm in Vaccine Safety: From Empirical to Rational Attenuation
转变疫苗安全范式:从经验衰减到理性衰减
- 批准号:
8664340 - 财政年份:2013
- 资助金额:
$ 76.9万 - 项目类别:
Shifting a Paradigm in Vaccine Safety: From Empirical to Rational Attenuation
转变疫苗安全范式:从经验衰减到理性衰减
- 批准号:
8504483 - 财政年份:2013
- 资助金额:
$ 76.9万 - 项目类别:
Shifting a Paradigm in Vaccine Safety: From Empirical to Rational Attenuation
转变疫苗安全范式:从经验衰减到理性衰减
- 批准号:
9064740 - 财政年份:2013
- 资助金额:
$ 76.9万 - 项目类别:
Shifting a Paradigm in Vaccine Safety: From Empirical to Rational Attenuation
转变疫苗安全范式:从经验衰减到理性衰减
- 批准号:
8852530 - 财政年份:2013
- 资助金额:
$ 76.9万 - 项目类别:
相似国自然基金
玛纳斯河流域上游吸收性气溶胶来源及其对积雪消融的影响研究
- 批准号:42307523
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
西北不同生态系统下气溶胶对边界层辐射平衡的影响及模拟研究
- 批准号:42375085
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于多源观测的北极地区有云环境气溶胶物理特性及其辐射效应研究
- 批准号:42305084
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
二次有机气溶胶理化性质对其冰核性能的影响
- 批准号:42375069
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
华北地区大气气溶胶长距离输送条件下单颗粒的来源及老化机制研究
- 批准号:42307141
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Lung delivery of novel ACE2 variants for COVID-19
针对 COVID-19 的新型 ACE2 变体的肺部输送
- 批准号:
10483042 - 财政年份:2022
- 资助金额:
$ 76.9万 - 项目类别:
Innate and adaptive defenses against SARS-COV-2 in the oral cavity during acute unvaccinated and breakthrough infections
急性未接种疫苗和突破性感染期间口腔针对 SARS-COV-2 的先天和适应性防御
- 批准号:
10667248 - 财政年份:2022
- 资助金额:
$ 76.9万 - 项目类别:
Novel Peptide Fusion Inhibitors for the Treatment of COVID-19
用于治疗 COVID-19 的新型肽融合抑制剂
- 批准号:
10379832 - 财政年份:2022
- 资助金额:
$ 76.9万 - 项目类别:
STRUCTURE-GUIDED RECEPTOR/INHIBITOR TRIMERIZATION AND RELATED STRATEGIES AGAINST CORONAVIRUSES
结构引导的受体/抑制剂三聚化及相关抗冠状病毒策略
- 批准号:
10671214 - 财政年份:2022
- 资助金额:
$ 76.9万 - 项目类别:
De Novo Design of Minibinder Antagonists for COVID-19 and Future Pandemics
针对 COVID-19 和未来大流行病的 Minibinder 拮抗剂的从头设计
- 批准号:
10460648 - 财政年份:2021
- 资助金额:
$ 76.9万 - 项目类别: