Multimodal Intraoral Imaging System for Oral Cancer Detection and Diagnosis in Low Resource Setting

用于资源匮乏环境下口腔癌检测和诊断的多模态口腔内成像系统

基本信息

  • 批准号:
    10663873
  • 负责人:
  • 金额:
    $ 61.82万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-08-10 至 2026-07-31
  • 项目状态:
    未结题

项目摘要

Oral and oropharyngeal squamous cell carcinoma (OSCC) together rank as the sixth most common cancer worldwide, accounting for 400,000 new cancer cases each year. Two-thirds of these cancers occur in low- and middle-income countries (LMICs). While the 5-year survival rate in the U.S. is 62%, the survival rate is only 10- 40% and cure rate around 30% in the developing world. The poor survival rate in LMICs is mainly due to late diagnosis and the resultant progression of disease to an advanced stage at diagnosis. Therefore, it is imperative to diagnose precursor and malignant lesions in LRS early and expeditiously. To meet the need for technologies that enable comprehensive oral cancer screening and diagnosis in low resource settings (LRS) to identify the suspicious lesions, triage the high-risk subjects and thereby enable appropriate treatment management and follow up, this project brings together an interdisciplinary team with complementary expertise in optical imaging, oncology, deep learning, technology translation, and commercialization. The team will develop, validate, and clinically translate a multimodal intraoral imaging system for oral cancer detection and diagnosis with better sensitivity and specificity. This work will address key barriers to adopting optical imaging techniques for oral cancer in LRS by building on the team’s experience in 1) developing and evaluating dual-mode (polarized white light imaging [pWLI] and autofluorescence imaging [AFI]) mobile imaging probes; 2) evaluating a low-cost, portable optical coherence tomography (OCT) system for oral cancer detection and diagnosis in a nodal center setting in India; and 3) developing and evaluating deep learning-based image classification algorithms for clinical decision-making guidance. As each of these key techniques has been demonstrated separately for oral cancer imaging in LRS, the potential of successfully developing a multimodal intraoral imaging system for accurate, objective and location-resolved diagnosis of oral cancer and transitioning to a new capability to medical professionals in LRS is very high. To achieve the project objective, the team proposes three Aims: 1) develop a portable, semi-flexible, and compact multimodal intraoral imaging system; 2) evaluate the clinical feasibility of the prototyped intraoral imaging system and develop deep learning-based image processing algorithms for early detection, diagnosis, and mapping of oral dysplastic and malignant lesions; and 3) validate the capability of the prototyped intraoral imaging system for diagnosing oral dysplasia and malignant lesions. Successful completion of this project will lead to the transition of a multimodal intraoral imaging system and deep learning image classification that leverage the individual strengths of multiple technologies and deliver new and urgently-needed capabilities to the end users in LRS. This integrated system will 1) detect suspicious regions with high sensitivity and specificity; 2) triage the high-risk subjects; and 3) guide the selection of biopsy sites and map lesion heterogeneity to improve treatment planning and intra-operative guidance.
口腔和口咽鳞状细胞癌 (OSCC) 一起成为第六大常见癌症 全球每年新增癌症病例 40 万例。其中三分之二的癌症发生在低度和 中等收入国家(LMIC)。虽然美国的 5 年生存率为 62%,但生存率仅为 10- 发展中国家的治愈率约为 40%,治愈率约为 30%。中低收入国家生存率低的主要原因是晚期 诊断以及诊断时疾病进展至晚期。因此,势在必行 及早、迅速地诊断 LRS 中的前驱病变和恶性病变。 满足对能够以较低的速度进行全面口腔癌筛查和诊断的技术的需求 资源设置(LRS)来识别可疑病变,对高风险受试者进行分类,从而使 适当的治疗管理和后续行动,该项目汇集了一个跨学科团队 光学成像、肿瘤学、深度学习、技术翻译等领域的互补专业知识 商业化。该团队将开发、验证并临床转化多模态口腔内成像 口腔癌检测和诊断系统具有更好的敏感性和特异性。这项工作将 通过建立团队的基础,解决在 LRS 中采用光学成像技术治疗口腔癌的主要障碍 1) 开发和评估双模式(偏振白光成像 [pWLI] 和 自发荧光成像 [AFI])移动成像探头; 2) 评估低成本、便携式光学相干 印度淋巴结中心用于口腔癌检测和诊断的断层扫描(OCT)系统;和 3) 开发和评估用于临床决策的基于深度学习的图像分类算法 指导。由于这些关键技术中的每一项都已分别在 LRS 口腔癌成像中得到了验证, 成功开发多模态口腔内成像系统的潜力,以实现准确、客观和 口腔癌的定位诊断以及向 LRS 医疗专业人员过渡到新功能 非常高。为了实现项目目标,团队提出了三个目标:1)开发一种便携式、半柔性、 和紧凑型多模态口腔内成像系统; 2)评估原型口内的临床可行性 成像系统并开发基于深度学习的图像处理算法,用于早期检测、诊断、 口腔发育不良和恶性病变的绘图; 3) 验证口腔内原型的能力 用于诊断口腔发育不良和恶性病变的成像系统。 该项目的成功完成将导致多模态口腔内成像系统的转变 和深度学习图像分类,利用多种技术的各自优势并提供 LRS 最终用户急需的新功能。该集成系统将 1) 检测可疑的 具有高敏感性和特异性的区域; 2)对高危对象进行分流; 3)指导活检的选择 部位并绘制病变异质性图,以改善治疗计划和术中指导。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Inter-observer agreement among specialists in the diagnosis of Oral Potentially Malignant Disorders and Oral Cancer using Store-and-Forward technology.
使用存储转发技术诊断口腔潜在恶性疾病和口腔癌的专家之间的观察者间协议。
  • DOI:
    10.21203/rs.3.rs-2754683/v1
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Gurushanth,Keerthi;Mukhia,Nirza;Sunny,SumsumP;Song,Bofan;Raghavan,ShubhasiniA;Gurudath,Shubha;Mendonca,Pramila;Li,Shaobai;Patrick,Sanjana;Imchen,Tsusennaro;Leivon,ShirleyT;Shruti,Tulika;Kolur,Trupti;Shetty,Vivek;BhushanR,V
  • 通讯作者:
    BhushanR,V
Interpretable and Reliable Oral Cancer Classifier with Attention Mechanism and Expert Knowledge Embedding via Attention Map.
  • DOI:
    10.3390/cancers15051421
  • 发表时间:
    2023-02-23
  • 期刊:
  • 影响因子:
    5.2
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Rongguang Liang其他文献

Rongguang Liang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Rongguang Liang', 18)}}的其他基金

Single viewpoint panoramic imaging technology for colonoscopy
肠镜单视点全景成像技术
  • 批准号:
    10580165
  • 财政年份:
    2023
  • 资助金额:
    $ 61.82万
  • 项目类别:
3D printing glass micro-objectives for ultrathin endoscope
3D打印超薄内窥镜玻璃显微物镜
  • 批准号:
    10377856
  • 财政年份:
    2022
  • 资助金额:
    $ 61.82万
  • 项目类别:
3D printing glass micro-objectives for ultrathin endoscope
3D打印超薄内窥镜玻璃显微物镜
  • 批准号:
    10544780
  • 财政年份:
    2022
  • 资助金额:
    $ 61.82万
  • 项目类别:
Multimodal Intraoral Imaging System for Oral Cancer Detection and Diagnosis in Low Resource Setting
用于资源匮乏环境下口腔癌检测和诊断的多模态口腔内成像系统
  • 批准号:
    10465103
  • 财政年份:
    2021
  • 资助金额:
    $ 61.82万
  • 项目类别:
Improving AI/ML-Readiness of data generated from NIH-funded research on oral cancer screening
提高 NIH 资助的口腔癌筛查研究生成的数据的 AI/ML 就绪性
  • 批准号:
    10594120
  • 财政年份:
    2021
  • 资助金额:
    $ 61.82万
  • 项目类别:
Structured chromatic light sheet microscopy
结构色光片显微镜
  • 批准号:
    10171843
  • 财政年份:
    2020
  • 资助金额:
    $ 61.82万
  • 项目类别:
Low-cost Mobile Oral Cancer Screening for Low Resource Setting
资源匮乏的低成本移动口腔癌筛查
  • 批准号:
    9762395
  • 财政年份:
    2018
  • 资助金额:
    $ 61.82万
  • 项目类别:
Low-cost Mobile Oral Cancer Screening for Low Resource Setting
资源匮乏的低成本移动口腔癌筛查
  • 批准号:
    9788365
  • 财政年份:
    2018
  • 资助金额:
    $ 61.82万
  • 项目类别:
Low-cost Mobile Oral Cancer Screening for Low Resource Setting
资源匮乏的低成本移动口腔癌筛查
  • 批准号:
    9031360
  • 财政年份:
    2016
  • 资助金额:
    $ 61.82万
  • 项目类别:
Fourier Ptychographic Endoscopy
傅里叶叠层内窥镜检查
  • 批准号:
    9247780
  • 财政年份:
    2016
  • 资助金额:
    $ 61.82万
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 61.82万
  • 项目类别:
    Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 61.82万
  • 项目类别:
    Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 61.82万
  • 项目类别:
    Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 61.82万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 61.82万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 61.82万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 61.82万
  • 项目类别:
    EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 61.82万
  • 项目类别:
    Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 61.82万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 61.82万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了