Improving AI/ML-Readiness of data generated from NIH-funded research on oral cancer screening

提高 NIH 资助的口腔癌筛查研究生成的数据的 AI/ML 就绪性

基本信息

  • 批准号:
    10594120
  • 负责人:
  • 金额:
    $ 28.23万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-08-10 至 2024-07-31
  • 项目状态:
    已结题

项目摘要

Oral and oropharyngeal squamous cell carcinoma (OSCC) together rank as the sixth most common cancer worldwide, accounting for 400,000 new cancer cases each year. Two-thirds of these cancers occur in low- and middle-income countries (LMICs). While the 5-year survival rate in the U.S. is 62%, the survival rate is only 10- 40% and cure rate around 30% in the developing world. To meet the need for technologies that enable comprehensive oral cancer screening and diagnosis in low resource settings (LRS). In the parent R01DE030682 project titled “Multimodal Intraoral Imaging System for Oral Cancer Detection and Diagnosis in Low Resource Setting”, we have formed an interdisciplinary team with complementary expertise in optical imaging, oncology, deep learning, technology translation, and commercialization to develop, validate, and clinically translate a multimodal intraoral imaging system for oral cancer detection and diagnosis. We will achieve the project objective through three Aims: (1) develop a portable, semi-flexible, and compact multimodal intraoral imaging system; (2) evaluate the clinical feasibility of the prototyped intraoral imaging system and develop deep learning based image processing algorithms for early detection, diagnosis, and mapping of oral dysplastic and malignant lesions; and (3) validate the capability of the prototyped intraoral imaging system for diagnosing oral dysplasia and malignant lesions. In our UH3CA239682 project titled “Low-cost Mobile Oral Cancer Screening for Low Resource Setting”, we have screened ~7,000 high-risk population for oral cancer and obtained at least two pairs of dual-modal images (white light and autofluorescence) from each patient and obtained more than 28,000 de-identified images and related information. It is the largest image dataset on oral cancers. With this Administrative Supplements, we will make the image data AI/ML-ready by improving data compatibility with AI/ML tools, cleaning dataset, balancing data, reducing uncertainty, improving the interoperability of the data with ontology, and improving trustworthiness of AI/ML models using pixel-level annotation. We will also demonstrate the use of the transformed data in AI/ML applications through (1) multi-class oral cancer classification using the transformed multi-modal data and (2) interpretable and trustworthy AI model using image-level labels and pixel-level annotation. The image data and machine learning models will be available through The University of Arizona Research Data Repository (ReDATA). Completion of this project will accelerate development of AI/ML-based techniques for early oral cancer detection in low-resource settings, reducing morbidity and mortality. It will make data FAIR (Findable, Accessible, Interoperable, and Reusable) with high impact for open science, contributing to the NIH vision of a modernized and integrated biomedical data ecosystem. The parent R01 project will directly benefit from this dataset and the developed AI/ML algorithms as deep learning segmentation based on dual-modal images will be used to locate the suspicious regions for optical coherence tomography (OCT) imaging.
口腔和口咽鳞状细胞癌(OSCC)共同排名第6位最常见的癌症

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Rongguang Liang其他文献

Rongguang Liang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Rongguang Liang', 18)}}的其他基金

Single viewpoint panoramic imaging technology for colonoscopy
肠镜单视点全景成像技术
  • 批准号:
    10580165
  • 财政年份:
    2023
  • 资助金额:
    $ 28.23万
  • 项目类别:
3D printing glass micro-objectives for ultrathin endoscope
3D打印超薄内窥镜玻璃显微物镜
  • 批准号:
    10377856
  • 财政年份:
    2022
  • 资助金额:
    $ 28.23万
  • 项目类别:
3D printing glass micro-objectives for ultrathin endoscope
3D打印超薄内窥镜玻璃显微物镜
  • 批准号:
    10544780
  • 财政年份:
    2022
  • 资助金额:
    $ 28.23万
  • 项目类别:
Multimodal Intraoral Imaging System for Oral Cancer Detection and Diagnosis in Low Resource Setting
用于资源匮乏环境下口腔癌检测和诊断的多模态口腔内成像系统
  • 批准号:
    10663873
  • 财政年份:
    2021
  • 资助金额:
    $ 28.23万
  • 项目类别:
Multimodal Intraoral Imaging System for Oral Cancer Detection and Diagnosis in Low Resource Setting
用于资源匮乏环境下口腔癌检测和诊断的多模态口腔内成像系统
  • 批准号:
    10465103
  • 财政年份:
    2021
  • 资助金额:
    $ 28.23万
  • 项目类别:
Structured chromatic light sheet microscopy
结构色光片显微镜
  • 批准号:
    10171843
  • 财政年份:
    2020
  • 资助金额:
    $ 28.23万
  • 项目类别:
Low-cost Mobile Oral Cancer Screening for Low Resource Setting
资源匮乏的低成本移动口腔癌筛查
  • 批准号:
    9762395
  • 财政年份:
    2018
  • 资助金额:
    $ 28.23万
  • 项目类别:
Low-cost Mobile Oral Cancer Screening for Low Resource Setting
资源匮乏的低成本移动口腔癌筛查
  • 批准号:
    9788365
  • 财政年份:
    2018
  • 资助金额:
    $ 28.23万
  • 项目类别:
Low-cost Mobile Oral Cancer Screening for Low Resource Setting
资源匮乏的低成本移动口腔癌筛查
  • 批准号:
    9031360
  • 财政年份:
    2016
  • 资助金额:
    $ 28.23万
  • 项目类别:
Fourier Ptychographic Endoscopy
傅里叶叠层内窥镜检查
  • 批准号:
    9247780
  • 财政年份:
    2016
  • 资助金额:
    $ 28.23万
  • 项目类别:

相似海外基金

A Longitudinal Qualitative Study of Fentanyl-Stimulant Polysubstance Use Among People Experiencing Homelessness (Administrative supplement)
无家可归者使用芬太尼兴奋剂多物质的纵向定性研究(行政补充)
  • 批准号:
    10841820
  • 财政年份:
    2023
  • 资助金额:
    $ 28.23万
  • 项目类别:
Proton-secreting epithelial cells as key modulators of epididymal mucosal immunity - Administrative Supplement
质子分泌上皮细胞作为附睾粘膜免疫的关键调节剂 - 行政补充
  • 批准号:
    10833895
  • 财政年份:
    2023
  • 资助金额:
    $ 28.23万
  • 项目类别:
Administrative Supplement: Life-Space and Activity Digital Markers for Detection of Cognitive Decline in Community-Dwelling Older Adults: The RAMS Study
行政补充:用于检测社区老年人认知衰退的生活空间和活动数字标记:RAMS 研究
  • 批准号:
    10844667
  • 财政年份:
    2023
  • 资助金额:
    $ 28.23万
  • 项目类别:
StrokeNet Administrative Supplement for the Funding Extension
StrokeNet 资助延期行政补充文件
  • 批准号:
    10850135
  • 财政年份:
    2023
  • 资助金额:
    $ 28.23万
  • 项目类别:
2023 NINDS Landis Mentorship Award - Administrative Supplement to NS121106 Control of Axon Initial Segment in Epilepsy
2023 年 NINDS 兰迪斯指导奖 - NS121106 癫痫轴突初始段控制的行政补充
  • 批准号:
    10896844
  • 财政年份:
    2023
  • 资助金额:
    $ 28.23万
  • 项目类别:
Biomarkers of Disease in Alcoholic Hepatitis Administrative Supplement
酒精性肝炎行政补充剂中疾病的生物标志物
  • 批准号:
    10840220
  • 财政年份:
    2023
  • 资助金额:
    $ 28.23万
  • 项目类别:
Administrative Supplement: Improving Inference of Genetic Architecture and Selection with African Genomes
行政补充:利用非洲基因组改进遗传结构的推断和选择
  • 批准号:
    10891050
  • 财政年份:
    2023
  • 资助金额:
    $ 28.23万
  • 项目类别:
Power-Up Study Administrative Supplement to Promote Diversity
促进多元化的 Power-Up 研究行政补充
  • 批准号:
    10711717
  • 财政年份:
    2023
  • 资助金额:
    $ 28.23万
  • 项目类别:
Administrative Supplement for Peer-Delivered and Technology-Assisted Integrated Illness Management and Recovery
同行交付和技术辅助的综合疾病管理和康复的行政补充
  • 批准号:
    10811292
  • 财政年份:
    2023
  • 资助金额:
    $ 28.23万
  • 项目类别:
Administrative Supplement: Genome Resources for Model Amphibians
行政补充:模型两栖动物基因组资源
  • 批准号:
    10806365
  • 财政年份:
    2023
  • 资助金额:
    $ 28.23万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了