Improving AI/ML-Readiness of data generated from NIH-funded research on oral cancer screening
提高 NIH 资助的口腔癌筛查研究生成的数据的 AI/ML 就绪性
基本信息
- 批准号:10594120
- 负责人:
- 金额:$ 28.23万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-10 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:AccountingAdministrative SupplementAlgorithmsArizonaCancer DetectionClinicalDataData SetDevelopmentDiagnosisEarly DiagnosisEquilibriumFAIR principlesFundingImageLabelLesionLightMalignant - descriptorMalignant NeoplasmsModelingModernizationMorbidity - disease rateOncologyOntologyOptical Coherence TomographyOralOral DiagnosisOropharyngeal Squamous Cell CarcinomaParentsPatientsReadinessResearchResource-limited settingScreening for Oral CancerSurvival RateTechniquesTechnologyTranslatingTranslationsUncertaintyUnited States National Institutes of HealthUniversitiesVisionbasecancer classificationcancer diagnosiscancer imagingcommercializationcostdata ecosystemdata interoperabilitydata repositorydeep learningflexibilityhigh risk populationimage processingimaging modalityimaging systemimprovedlow and middle-income countriesmachine learning modelmalignant mouth neoplasmmortalitymultimodal datamultimodalityopen dataoptical imagingoral dysplasiaportabilityprototypetooltrustworthiness
项目摘要
Oral and oropharyngeal squamous cell carcinoma (OSCC) together rank as the sixth most common cancer
worldwide, accounting for 400,000 new cancer cases each year. Two-thirds of these cancers occur in low- and
middle-income countries (LMICs). While the 5-year survival rate in the U.S. is 62%, the survival rate is only 10-
40% and cure rate around 30% in the developing world. To meet the need for technologies that enable
comprehensive oral cancer screening and diagnosis in low resource settings (LRS). In the parent R01DE030682
project titled “Multimodal Intraoral Imaging System for Oral Cancer Detection and Diagnosis in Low Resource
Setting”, we have formed an interdisciplinary team with complementary expertise in optical imaging, oncology,
deep learning, technology translation, and commercialization to develop, validate, and clinically translate a
multimodal intraoral imaging system for oral cancer detection and diagnosis. We will achieve the project objective
through three Aims: (1) develop a portable, semi-flexible, and compact multimodal intraoral imaging system; (2)
evaluate the clinical feasibility of the prototyped intraoral imaging system and develop deep learning based image
processing algorithms for early detection, diagnosis, and mapping of oral dysplastic and malignant lesions; and
(3) validate the capability of the prototyped intraoral imaging system for diagnosing oral dysplasia and malignant
lesions.
In our UH3CA239682 project titled “Low-cost Mobile Oral Cancer Screening for Low Resource Setting”, we
have screened ~7,000 high-risk population for oral cancer and obtained at least two pairs of dual-modal images
(white light and autofluorescence) from each patient and obtained more than 28,000 de-identified images and
related information. It is the largest image dataset on oral cancers. With this Administrative Supplements, we will
make the image data AI/ML-ready by improving data compatibility with AI/ML tools, cleaning dataset, balancing
data, reducing uncertainty, improving the interoperability of the data with ontology, and improving trustworthiness
of AI/ML models using pixel-level annotation. We will also demonstrate the use of the transformed data in AI/ML
applications through (1) multi-class oral cancer classification using the transformed multi-modal data and (2)
interpretable and trustworthy AI model using image-level labels and pixel-level annotation.
The image data and machine learning models will be available through The University of Arizona Research
Data Repository (ReDATA). Completion of this project will accelerate development of AI/ML-based techniques
for early oral cancer detection in low-resource settings, reducing morbidity and mortality. It will make data FAIR
(Findable, Accessible, Interoperable, and Reusable) with high impact for open science, contributing to the NIH
vision of a modernized and integrated biomedical data ecosystem. The parent R01 project will directly benefit
from this dataset and the developed AI/ML algorithms as deep learning segmentation based on dual-modal
images will be used to locate the suspicious regions for optical coherence tomography (OCT) imaging.
口腔和口咽鳞状细胞癌(OSCC)一起列为第六大常见癌症
全球每年新增40万例癌症病例。这些癌症中有三分之二发生在低-
中等收入国家(LMIC)。虽然美国的5年生存率为62%,但生存率仅为10-
发展中国家的治愈率约为30%。为了满足对技术的需求,
在低资源环境中进行全面的口腔癌筛查和诊断。在父R 01 DE 030682中
项目名为“用于低资源口腔癌检测和诊断的多模式口内成像系统
我们成立了一个跨学科的团队,在光学成像,肿瘤学,
深度学习、技术转化和商业化,以开发、验证和临床转化
用于口腔癌检测和诊断的多模式口内成像系统。我们会达到计划的目标
通过三个目标:(1)开发一种便携式、半柔性和紧凑的多模式口内成像系统;(2)
评估原型口内成像系统的临床可行性,并开发基于深度学习的图像
用于口腔发育异常和恶性病变的早期检测、诊断和映射的处理算法;以及
(3)验证原型口内成像系统诊断口腔发育不良和恶性肿瘤的能力
病变
在我们的UH 3CA 239682项目“低资源环境下的低成本移动的口腔癌筛查”中,
已经筛查了约7,000名口腔癌高危人群,并获得了至少两对双模态图像
(白色光和自体荧光),并获得了超过28,000个去识别图像,
相关信息。它是关于口腔癌的最大图像数据集。有了这些行政补充,我们将
通过提高与AI/ML工具的数据兼容性,清理数据集,平衡
数据,减少不确定性,提高数据与本体的互操作性,并提高可信度
使用像素级注释的AI/ML模型。我们还将演示在AI/ML中使用转换后的数据
通过(1)使用变换的多模态数据的多类口腔癌分类和(2)
使用图像级标签和像素级注释的可解释和可信赖的AI模型。
图像数据和机器学习模型将通过亚利桑那大学研究中心提供
数据存储库(ReDATA)。该项目的完成将加速基于AI/ML的技术的发展
在低资源环境中进行早期口腔癌检测,降低发病率和死亡率。它将使数据公平
(可查找、可解释、可互操作和可重用),对开放科学具有很大影响,为NIH做出贡献
一个现代化和集成的生物医学数据生态系统的愿景。R 01母项目将直接受益
从这个数据集和开发的AI/ML算法作为基于双模态的深度学习分割,
图像将用于定位光学相干断层扫描(OCT)成像的可疑区域。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rongguang Liang其他文献
Rongguang Liang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rongguang Liang', 18)}}的其他基金
Single viewpoint panoramic imaging technology for colonoscopy
肠镜单视点全景成像技术
- 批准号:
10580165 - 财政年份:2023
- 资助金额:
$ 28.23万 - 项目类别:
3D printing glass micro-objectives for ultrathin endoscope
3D打印超薄内窥镜玻璃显微物镜
- 批准号:
10377856 - 财政年份:2022
- 资助金额:
$ 28.23万 - 项目类别:
3D printing glass micro-objectives for ultrathin endoscope
3D打印超薄内窥镜玻璃显微物镜
- 批准号:
10544780 - 财政年份:2022
- 资助金额:
$ 28.23万 - 项目类别:
Multimodal Intraoral Imaging System for Oral Cancer Detection and Diagnosis in Low Resource Setting
用于资源匮乏环境下口腔癌检测和诊断的多模态口腔内成像系统
- 批准号:
10663873 - 财政年份:2021
- 资助金额:
$ 28.23万 - 项目类别:
Multimodal Intraoral Imaging System for Oral Cancer Detection and Diagnosis in Low Resource Setting
用于资源匮乏环境下口腔癌检测和诊断的多模态口腔内成像系统
- 批准号:
10465103 - 财政年份:2021
- 资助金额:
$ 28.23万 - 项目类别:
Low-cost Mobile Oral Cancer Screening for Low Resource Setting
资源匮乏的低成本移动口腔癌筛查
- 批准号:
9762395 - 财政年份:2018
- 资助金额:
$ 28.23万 - 项目类别:
Low-cost Mobile Oral Cancer Screening for Low Resource Setting
资源匮乏的低成本移动口腔癌筛查
- 批准号:
9788365 - 财政年份:2018
- 资助金额:
$ 28.23万 - 项目类别:
Low-cost Mobile Oral Cancer Screening for Low Resource Setting
资源匮乏的低成本移动口腔癌筛查
- 批准号:
9031360 - 财政年份:2016
- 资助金额:
$ 28.23万 - 项目类别:
相似海外基金
Proton-secreting epithelial cells as key modulators of epididymal mucosal immunity - Administrative Supplement
质子分泌上皮细胞作为附睾粘膜免疫的关键调节剂 - 行政补充
- 批准号:
10833895 - 财政年份:2023
- 资助金额:
$ 28.23万 - 项目类别:
A Longitudinal Qualitative Study of Fentanyl-Stimulant Polysubstance Use Among People Experiencing Homelessness (Administrative supplement)
无家可归者使用芬太尼兴奋剂多物质的纵向定性研究(行政补充)
- 批准号:
10841820 - 财政年份:2023
- 资助金额:
$ 28.23万 - 项目类别:
StrokeNet Administrative Supplement for the Funding Extension
StrokeNet 资助延期行政补充文件
- 批准号:
10850135 - 财政年份:2023
- 资助金额:
$ 28.23万 - 项目类别:
2023 NINDS Landis Mentorship Award - Administrative Supplement to NS121106 Control of Axon Initial Segment in Epilepsy
2023 年 NINDS 兰迪斯指导奖 - NS121106 癫痫轴突初始段控制的行政补充
- 批准号:
10896844 - 财政年份:2023
- 资助金额:
$ 28.23万 - 项目类别:
Biomarkers of Disease in Alcoholic Hepatitis Administrative Supplement
酒精性肝炎行政补充剂中疾病的生物标志物
- 批准号:
10840220 - 财政年份:2023
- 资助金额:
$ 28.23万 - 项目类别:
Administrative Supplement: Life-Space and Activity Digital Markers for Detection of Cognitive Decline in Community-Dwelling Older Adults: The RAMS Study
行政补充:用于检测社区老年人认知衰退的生活空间和活动数字标记:RAMS 研究
- 批准号:
10844667 - 财政年份:2023
- 资助金额:
$ 28.23万 - 项目类别:
Administrative Supplement: Improving Inference of Genetic Architecture and Selection with African Genomes
行政补充:利用非洲基因组改进遗传结构的推断和选择
- 批准号:
10891050 - 财政年份:2023
- 资助金额:
$ 28.23万 - 项目类别:
Power-Up Study Administrative Supplement to Promote Diversity
促进多元化的 Power-Up 研究行政补充
- 批准号:
10711717 - 财政年份:2023
- 资助金额:
$ 28.23万 - 项目类别:
Administrative Supplement for Peer-Delivered and Technology-Assisted Integrated Illness Management and Recovery
同行交付和技术辅助的综合疾病管理和康复的行政补充
- 批准号:
10811292 - 财政年份:2023
- 资助金额:
$ 28.23万 - 项目类别:
Administrative Supplement: Genome Resources for Model Amphibians
行政补充:模型两栖动物基因组资源
- 批准号:
10806365 - 财政年份:2023
- 资助金额:
$ 28.23万 - 项目类别:














{{item.name}}会员




