Determining Computational Principles Governing Neural Circuits Responsible for Feedback and Movement Control of D. Melanogaster Flight
确定负责黑腹果蝇飞行反馈和运动控制的神经回路的计算原理
基本信息
- 批准号:10709776
- 负责人:
- 金额:$ 33.85万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-04-15 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
PROJECT SUMMARY
A principle aim of the NINDS is to determine how motor control is successfully implemented by
the nervous system. Locomotion and balance are complex motor functions that are largely
controlled by complex microcircuits that reside outside the brain. Understanding how such
microcircuits function is critical to being able to treat diseases related to age, congenital disorders,
and trauma in which these circuits are impaired. This proposal will leverage advantages of a highly
tractable model system, the fruit fly (Drosophila melanogaster), to elucidate the computational
principles underlying the sensorimotor circuits that govern flight stabilization. Fruit flies are an
excellent model system for conducting such studies for several reasons. First, through a
collaborative project with the HHMI, the PI has helped develop ~220 transgenic fly lines targeting
sparse populations of neurons in the fly ventral nerve cord (VNC), which can be chronically
silenced, optogenetically activated, or optogenetically suppressed. Second, in experiments
pioneered by the PI, we showed that the reflexive responses of the fly to yaw, pitch, and roll
perturbations are described quantitatively by a proportional-integral controller—a control strategy
similar to a car’s cruise control or a sophisticated thermostat. Thus, the fly’s stabilization reflexes,
while complex, are well characterized. Consequently, there is an opportunity to systematically
interrogate neurons in the VNC and determine their effect on a sophisticated motor behavior.
Towards this end, in Aim 1 we will map the function of the motor system that actuates rapid flight
stabilization in flies. Specifically, we will chronically silence or transiently manipulate individual
motor neurons that innervate wing steering muscles and test control performance in free flight
and under rapid mechanical perturbations. In Aim 2 we will elucidate the functional role specific
mechanosensory neurons in the control reflex. Once again we will use chronic silencing or
transient manipulation of individual mechanosensory neurons and test control performance in free
flight and under rapid mechanical perturbations. Finally, in Aim 3 we will identify the neural
architecture connecting the mechanosensory inputs to the wing muscle outputs. Specifically, we
will use anterograde transsynaptic circuit tracing (trans-Tango) and ex-vivo functional imaging to
identify motor and interneurons that receive direct input from the genetically-identified
mechanosensory afferents. Together, these studies will enable us to determine with
unprecedented detail the organization and function of these microcircuits. In turn, this knowledge
will inform our understanding of design principles for sensorimotor circuits across animals.
项目摘要
NINDS的主要目的是确定如何通过以下方式成功地实现电机控制:
神经系统运动和平衡是复杂的运动功能,
由大脑外部的复杂微电路控制。了解如何这样
微电路功能对于能够治疗与年龄,先天性疾病,
和创伤中这些回路受损。该提案将利用高度
一个易于处理的模型系统,果蝇(Drosophila melanogaster),以阐明计算
控制飞行稳定性的感觉运动回路的基本原理。果蝇是一种
优秀的模型系统进行这样的研究有几个原因。首先,通过A
作为与HHMI的合作项目,PI已经帮助开发了约220种转基因果蝇品系,
果蝇腹神经索(VNC)中的稀疏神经元群体,这可能是慢性的,
沉默、光遗传学激活或光遗传学抑制。第二,在实验中,
由PI开创,我们表明苍蝇对偏航,俯仰和滚动的反射反应
扰动定量描述的比例积分滤波器-a控制策略
类似于汽车的巡航控制或复杂的恒温器。因此,苍蝇的稳定反射,
虽然复杂,但特征很好。因此,有机会系统地
询问VNC中的神经元,并确定它们对复杂运动行为的影响。
为此,在目标1中,我们将绘制驱动快速飞行的运动系统的功能图
稳定苍蝇。具体来说,我们会长期沉默或短暂操纵个人
运动神经元,支配机翼操纵肌肉和测试自由飞行中的控制性能
并且在快速的机械扰动下。在目标2中,我们将阐明特定的功能角色
控制反射中的机械感觉神经元。我们将再次使用慢性沉默或
瞬时操纵个别机械感觉神经元和测试控制性能在自由
飞行和快速机械扰动下。最后,在目标3中,我们将确定神经
连接机械感觉输入到翅膀肌肉输出的结构。我们特别
将使用顺行跨突触回路追踪(trans-Tango)和离体功能成像,
识别从遗传识别的神经元接收直接输入的运动神经元和中间神经元,
机械感觉传入这些研究将使我们能够确定
这些微电路的组织和功能的前所未有的细节。反过来,这些知识
将告知我们对动物感觉运动回路设计原理的理解。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Itai Cohen其他文献
Itai Cohen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Itai Cohen', 18)}}的其他基金
Cross-modal sensory interactions, processing, and representation in the Drosophila brain
果蝇大脑中的跨模式感觉交互、处理和表征
- 批准号:
10645611 - 财政年份:2023
- 资助金额:
$ 33.85万 - 项目类别:
A robotic fiber platform for large area deep brain interfacing
用于大面积深部脑接口的机器人纤维平台
- 批准号:
10294007 - 财政年份:2021
- 资助金额:
$ 33.85万 - 项目类别:
A robotic fiber platform for large area deep brain interfacing
用于大面积深部脑接口的机器人纤维平台
- 批准号:
10463747 - 财政年份:2021
- 资助金额:
$ 33.85万 - 项目类别:
Mapping local strains in cartilage during injurious impact loading
绘制有害冲击载荷期间软骨的局部应变图
- 批准号:
8625269 - 财政年份:2013
- 资助金额:
$ 33.85万 - 项目类别:
Mapping local strains in cartilage during injurious impact loading
绘制有害冲击载荷期间软骨的局部应变图
- 批准号:
8442047 - 财政年份:2013
- 资助金额:
$ 33.85万 - 项目类别:
Mapping Shear Properties of Articular Cartilage Using Fast Confocal Microscopy
使用快速共焦显微镜绘制关节软骨的剪切特性
- 批准号:
7390685 - 财政年份:2007
- 资助金额:
$ 33.85万 - 项目类别:
Mapping Shear Properties of Articular Cartilage Using Fast Confocal Microscopy
使用快速共焦显微镜绘制关节软骨的剪切特性
- 批准号:
7242668 - 财政年份:2007
- 资助金额:
$ 33.85万 - 项目类别:
相似国自然基金
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: PPoSS: LARGE: Principles and Infrastructure of Extreme Scale Edge Learning for Computational Screening and Surveillance for Health Care
合作研究:PPoSS:大型:用于医疗保健计算筛查和监视的超大规模边缘学习的原理和基础设施
- 批准号:
2406572 - 财政年份:2023
- 资助金额:
$ 33.85万 - 项目类别:
Continuing Grant
Computational, anatomical, and molecular principles of system-wide visual encoding
全系统视觉编码的计算、解剖和分子原理
- 批准号:
10676656 - 财政年份:2023
- 资助金额:
$ 33.85万 - 项目类别:
“CRCNS: Computational principles of memory based decision making in Drosophila”
–CRCNS:果蝇基于记忆的决策的计算原理 –
- 批准号:
10456950 - 财政年份:2021
- 资助金额:
$ 33.85万 - 项目类别:
CRCNS: Computational principles of mental simulation in the entorhinal and parietal cortex
CRCNS:内嗅和顶叶皮层心理模拟的计算原理
- 批准号:
10396142 - 财政年份:2021
- 资助金额:
$ 33.85万 - 项目类别:
Collaborative Research: PPoSS: LARGE: Principles and Infrastructure of Extreme Scale Edge Learning for Computational Screening and Surveillance for Health Care
合作研究:PPoSS:大型:用于医疗保健计算筛查和监视的超大规模边缘学习的原理和基础设施
- 批准号:
2118953 - 财政年份:2021
- 资助金额:
$ 33.85万 - 项目类别:
Continuing Grant
Machine Learning and Control Principles for Computational Biology
计算生物学的机器学习和控制原理
- 批准号:
10707916 - 财政年份:2021
- 资助金额:
$ 33.85万 - 项目类别:
Machine Learning and Control Principles for Computational Biology
计算生物学的机器学习和控制原理
- 批准号:
10276879 - 财政年份:2021
- 资助金额:
$ 33.85万 - 项目类别:
“CRCNS: Computational principles of memory based decision making in Drosophila”
–CRCNS:果蝇基于记忆的决策的计算原理 –
- 批准号:
10653144 - 财政年份:2021
- 资助金额:
$ 33.85万 - 项目类别:
Discovering the molecular genetic principles of cell type organization through neurobiology-guided computational analysis of single cell multi-omics data sets
通过神经生物学引导的单细胞多组学数据集计算分析发现细胞类型组织的分子遗传学原理
- 批准号:
10189902 - 财政年份:2021
- 资助金额:
$ 33.85万 - 项目类别:
CRCNS: Discovering Computational Principles of Language Processing in the Brain
CRCNS:发现大脑语言处理的计算原理
- 批准号:
10395748 - 财政年份:2021
- 资助金额:
$ 33.85万 - 项目类别: