Molecular mechanism of phospholipid scrambling by rhodopsin
视紫红质扰乱磷脂的分子机制
基本信息
- 批准号:9374546
- 负责人:
- 金额:$ 25.43万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-01 至 2019-08-31
- 项目状态:已结题
- 来源:
- 关键词:ATP-Binding Cassette TransportersAdolescentAffectAge related macular degenerationAmino AcidsAnimalsApoproteinsAreaBiochemicalBiological AssayBiologyBiophysicsCell membraneCellsCholesterolComputer SimulationComputing MethodologiesCyclodextrinsDataDimerizationDiseaseEnvironmentFluorescenceFutureG-Protein-Coupled ReceptorsGTP-Binding Protein alpha Subunits, GsGoalsHydration statusKnowledgeLeadLightLipidsMapsMeasuresMediatingMembraneMolecularOpsinPathway interactionsPhosphatidylserinesPhospholipidsPhotoreceptorsPhysiologyPlayPopulationProcessProteinsReaderRetinaRetinalRetinal DiseasesRetinal PigmentsRetinaldehydeRetinoidsRhodopsinRoleRouteSideSignal TransductionSite-Directed MutagenesisStargardt&aposs diseaseSurfaceTechniquesTestingTransmembrane TransportTransport ProcessVesicleVestibuleVitamin AWaterWorkbasebeta-2 Adrenergic Receptorscomputer studiesconformational conversioncrosslinkdimerdisulfide bondexperimental studyinfancyinsightinterestlipid transportmolecular dynamicsmutantnoveloverexpressionphospholipid scramblasephotoreceptor discpreventreconstitutionunilamellar vesicle
项目摘要
The visual pigment rhodopsin is a constitutively active lipid scramblase capable of moving phospholipids
rapidly between the leaflets of a membrane bilayer. This novel activity of rhodopsin plays a key role in
enabling the ABC transporter ABCA4 to prevent accumulation of retinaldehydes and mitigate the formation
of Vitamin A dimers. The toxic buildup of these molecules in the retina is considered to contribute to
mechanisms underlying retinopathies such as Stargardt's disease and age-related macular degeneration.
Both rhodopsin and its apo-protein opsin are scramblases, and here we are interested in understanding the
molecular mechanism by which they translocate phospholipids. Based on preliminary results from atomistic
molecular dynamics simulations we hypothesize that lipids are transported at the interface of specific
transmembrane helices in opsin. Plasma membranes lack constitutive phospholipid scramblase activity, and
thereby sequester the signaling lipid phosphatidylserine (PS) in the inner leaflet until scramblases are
activated. However, cells that over-express opsin unexpectedly do not display PS at their surface. We
hypothesize that high cholesterol levels in the plasma membrane silence opsin's scramblase activity. We
propose two specific aims to test these hypotheses via biophysical, biochemical and computational methods.
In the first aim we will combine experimental and in silico analyses to test the lipid translocation pathway
within opsin predicted by our molecular dynamics simulations. Using site-directed mutagenesis we will
crosslink transmembrane helices and also alter the pathway environment in order to disrupt transport, as
measured in our fluorescence-based scramblase assays. We will also analyze the mutant opsins by molecular
dynamics simulations in order to obtain structural context and mechanistic insights into the experimental
results. In the second aim, we will use cell and vesicle-based assays to determine the effect of cholesterol on
lipid scrambling, in conjunction with molecular dynamics simulations of wild-type opsin in cholesterol-
containing membranes.
The proposed studies will provide the first insights into the mechanism of lipid scrambling. As scramblases
have only recently been discovered, their molecular mechanism is unknown and the field is in its infancy.
The knowledge that we gain here will set the stage for future elucidation of this process in molecular detail.
This has important implications for physiology, because of the role that opsin's scramblase mechanism is
likely to have in supporting the flippase activity of ABCA4 in photoreceptor disc membranes. Deficiencies in
this mechanism are clearly associated with retinopathies. Moreover, because opsin's scramblase activity is
shared by other G protein-coupled receptors (GPCRs) such as the β2-adrenergic receptor, our experiments
also have the potential to open a new area of GPCR biology.
视色素视紫红质是一种组成型活性脂质扰乱酶,能够移动磷脂
快速地在膜双层的小叶之间。视紫红质的这种新颖活性在
使 ABC 转运蛋白 ABCA4 能够防止视黄醛的积累并减少其形成
维生素A二聚体。这些分子在视网膜中的毒性积累被认为有助于
斯塔加特氏病和年龄相关性黄斑变性等视网膜病变的潜在机制。
视紫红质及其脱辅基蛋白视蛋白都是乱序酶,在这里我们有兴趣了解
它们转运磷脂的分子机制。基于原子论的初步结果
分子动力学模拟我们假设脂质在特定的界面上运输
视蛋白中的跨膜螺旋。质膜缺乏组成型磷脂扰乱酶活性,并且
从而将信号脂质磷脂酰丝氨酸 (PS) 隔离在内部小叶中,直到乱序被
活性。然而,过度表达视蛋白的细胞出乎意料地不会在其表面显示 PS。我们
假设质膜中的高胆固醇水平会抑制视蛋白的扰乱酶活性。我们
提出了两个具体目标,通过生物物理、生物化学和计算方法来检验这些假设。
在第一个目标中,我们将结合实验和计算机分析来测试脂质易位途径
在我们的分子动力学模拟预测的视蛋白内。使用定点诱变,我们将
交联跨膜螺旋并改变通路环境以破坏运输,如
在我们基于荧光的扰乱酶测定中进行测量。我们还将通过分子分析分析突变视蛋白
动力学模拟以获得实验的结构背景和机制见解
结果。在第二个目标中,我们将使用基于细胞和囊泡的检测来确定胆固醇对
脂质扰乱,结合胆固醇中野生型视蛋白的分子动力学模拟
含有膜。
拟议的研究将为脂质扰乱机制提供初步见解。作为乱序
最近才被发现,其分子机制尚不清楚,该领域还处于起步阶段。
我们在这里获得的知识将为将来阐明这一过程的分子细节奠定基础。
这对生理学具有重要意义,因为视蛋白的扰乱酶机制在
可能支持感光盘膜中 ABCA4 的翻转酶活性。不足之处
这种机制显然与视网膜病变有关。此外,由于视蛋白的扰乱酶活性
与其他 G 蛋白偶联受体 (GPCR) 共享,例如 β2-肾上腺素受体,我们的实验
也有可能开辟 GPCR 生物学的新领域。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
George Khelashvili其他文献
George Khelashvili的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('George Khelashvili', 18)}}的其他基金
Structural basis of receptor-mediated cellular vitamin A uptake
受体介导的细胞维生素 A 摄取的结构基础
- 批准号:
10682067 - 财政年份:2017
- 资助金额:
$ 25.43万 - 项目类别:
EXPLORING THE ROLE OF CHOLESTEROL IN G-PROTEIN-COUPLED RECEPTOR FUNCTION, STABI
探索胆固醇在 G 蛋白偶联受体功能 STABI 中的作用
- 批准号:
8364299 - 财政年份:2011
- 资助金额:
$ 25.43万 - 项目类别:
EXPLORING THE ROLE OF CHOLESTEROL IN G-PROTEIN-COUPLED RECEPTOR FUNCTION, STABI
探索胆固醇在 G 蛋白偶联受体功能 STABI 中的作用
- 批准号:
8171915 - 财政年份:2010
- 资助金额:
$ 25.43万 - 项目类别:
相似海外基金
Understanding How Adolescent Bullying Experiences Affect Traumatic Stress,Sexual Health and STI Risk among Men Who Have Sex with Men (MSM)
了解青少年欺凌经历如何影响男男性行为者 (MSM) 的创伤性压力、性健康和性传播感染风险
- 批准号:
10553263 - 财政年份:2022
- 资助金额:
$ 25.43万 - 项目类别:
Understanding How Adolescent Bullying Experiences Affect Traumatic Stress,Sexual Health and STI Risk among Men Who Have Sex with Men (MSM)
了解青少年欺凌经历如何影响男男性行为者 (MSM) 的创伤性压力、性健康和性传播感染风险
- 批准号:
10347813 - 财政年份:2022
- 资助金额:
$ 25.43万 - 项目类别:
Visuocortical Dynamics of Affect-Biased Attention in the Development of Adolescent Depression
青少年抑郁症发展过程中情感偏向注意力的视觉皮层动力学
- 批准号:
10380686 - 财政年份:2019
- 资助金额:
$ 25.43万 - 项目类别:
Visuocortical Dynamics of Affect-Biased Attention in the Development of Adolescent Depression
青少年抑郁症发展过程中情感偏向注意力的视觉皮层动力学
- 批准号:
9888437 - 财政年份:2019
- 资助金额:
$ 25.43万 - 项目类别:
Visuocortical Dynamics of Affect-Biased Attention in the Development of Adolescent Depression
青少年抑郁症发展过程中情感偏向注意力的视觉皮层动力学
- 批准号:
10597082 - 财政年份:2019
- 资助金额:
$ 25.43万 - 项目类别:
Targeting maladaptive responding to negative affect in adolescent cannabis users
针对青少年大麻使用者的负面影响的适应不良反应
- 批准号:
9371970 - 财政年份:2017
- 资助金额:
$ 25.43万 - 项目类别:
Childhood positive affect and anger as predictors of adolescent risky behavior
童年积极影响和愤怒是青少年危险行为的预测因素
- 批准号:
9139461 - 财政年份:2015
- 资助金额:
$ 25.43万 - 项目类别:
Do State Marijuana Policies Affect Adolescent Marijuana and Alcohol Use?
州大麻政策会影响青少年大麻和酒精的使用吗?
- 批准号:
8783159 - 财政年份:2014
- 资助金额:
$ 25.43万 - 项目类别:
Do State Marijuana Policies Affect Adolescent Marijuana and Alcohol Use?
州大麻政策会影响青少年大麻和酒精的使用吗?
- 批准号:
8853783 - 财政年份:2014
- 资助金额:
$ 25.43万 - 项目类别:
Assessment of Affect Instability in Adolescent Girls with BPD Features
具有 BPD 特征的青春期女孩的情绪不稳定评估
- 批准号:
8122499 - 财政年份:2011
- 资助金额:
$ 25.43万 - 项目类别:














{{item.name}}会员




