Development of a benchtop x-ray fluorescence tomography system using a novel geom

使用新型几何体开发台式 X 射线荧光断层扫描系统

基本信息

  • 批准号:
    9243250
  • 负责人:
  • 金额:
    $ 39.21万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-04-01 至 2019-03-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): The goal of this proposal is to construct, optimize, and test a bench top x-ray fluorescence computed tomography (XFCT) system based on a promising new geometry we have recently developed and validated using synchrotron radiation. The novel geometry involves pencil-beam x-ray illumination of the sample coupled with slit collimation of a position- and energy-sensitive fluorescence x-ray detector. This allows for direct acquisition of the distribution of elements along the illuminated line without solving an ill-posed inverse problem. While the technology has the potential to be used in vivo, our aim in this proposal is to perform very high quality ex-vivo imaging of trace metals in biological samples. Many endogenous metals and metal ions, such as iron, copper, and zinc, play critical roles in signal transduction and reaction catalysis, while others, such as mercury, cadmium, and lead, are quite toxic even in trace quantities. In the post-genomic era, the new disciplines of metallogenomics, metalloproteomics, and metallomics are emerging for the systematic study of endogenous metals. These disciplines would benefit greatly from the spatially resolved maps of trace-element distribution and speciation provided by the methods being explored in the proposal. We seek to construct a system that can image sub-centimeter specimens (such as mouse organs) at 100 micron spatial resolution, with reasonable imaging times (~ 1-4 hours) and at radiation doses below damage threshold. The specific aims of the proposal are: Aim 1: The system design will be optimized for sensitivity using analytic and Monte Carlo-based tools Aim 2: A benchtop XFCT system will be fabricated Aim 3: Calibration procedures and image formation algorithms will be developed Aim 4: The system will be tested on phantoms and samples of biological interest
描述(由申请人提供):本提案的目标是构建、优化和测试台式 X 射线荧光计算机断层扫描 (XFCT) 系统,该系统基于我们最近使用同步加速器辐射开发和验证的有前途的新几何结构。新颖的几何结构涉及样品的笔形束 X 射线照明以及位置和能量敏感荧光 X 射线探测器的狭缝准直。这允许直接 获取沿照明线的元素分布,无需解决不适定问题 逆问题。虽然该技术具有在体内使用的潜力,但我们本提案的目标是对生物样品中的痕量金属进行非常高质量的离体成像。 许多内源性金属和金属离子,如铁、铜和锌,在信号转导和反应催化中发挥着关键作用,而其他金属和金属离子,如汞、镉和铅,即使是微量也具有相当的毒性。后基因组时代,用于系统研究内源金属的金属基因组学、金属蛋白质组学和金属组学等新学科正在兴起。这些学科将从提案中探索的方法提供的痕量元素分布和形态形成的空间解析图中受益匪浅。 我们寻求构建一个能够以 100 微米空间分辨率、合理的成像时间(约 1-4 小时)和低于损伤阈值的辐射剂量对亚厘米样本(例如小鼠器官)进行成像的系统。该提案的具体目标是: 目标 1:将使用基于分析和蒙特卡罗的工具优化系统设计的灵敏度 目标 2:将制造台式 XFCT 系统 目标 3:将开发校准程序和图像形成算法 目标 4:将在人体模型和生物感兴趣的样本上测试系统

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Improved deconvolution of very weak confocal signals.
  • DOI:
    10.12688/f1000research.11773.2
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Day KJ;La Rivière PJ;Chandler T;Bindokas VP;Ferrier NJ;Glick BS
  • 通讯作者:
    Glick BS
Element Mapping in Organic Samples Utilizing a Benchtop X-Ray Fluorescence Emission Tomography (XFET) System.
  • DOI:
    10.1109/tns.2015.2465380
  • 发表时间:
    2015-10
  • 期刊:
  • 影响因子:
    1.8
  • 作者:
    Groll A;George J;Vargas P;La Rivière PJ;Meng LJ
  • 通讯作者:
    Meng LJ
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Patrick Jean La Riviere其他文献

Patrick Jean La Riviere的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Patrick Jean La Riviere', 18)}}的其他基金

Enhanced megavoltage imaging for radiotherapy by light-field imaging of scintillators
通过闪烁体光场成像增强放射治疗兆伏电压成像
  • 批准号:
    9924560
  • 财政年份:
    2019
  • 资助金额:
    $ 39.21万
  • 项目类别:
Broadband X-ray Fluorescence Emission Tomography
宽带 X 射线荧光发射断层扫描
  • 批准号:
    10159267
  • 财政年份:
    2018
  • 资助金额:
    $ 39.21万
  • 项目类别:
Broadband X-ray Fluorescence Emission Tomography
宽带 X 射线荧光发射断层扫描
  • 批准号:
    9751292
  • 财政年份:
    2018
  • 资助金额:
    $ 39.21万
  • 项目类别:
Broadband X-ray Fluorescence Emission Tomography
宽带 X 射线荧光发射断层扫描
  • 批准号:
    9926880
  • 财政年份:
    2018
  • 资助金额:
    $ 39.21万
  • 项目类别:
Broadband X-ray Fluorescence Emission Tomography
宽带 X 射线荧光发射断层扫描
  • 批准号:
    9984658
  • 财政年份:
    2018
  • 资助金额:
    $ 39.21万
  • 项目类别:
Development of a benchtop x-ray fluorescence tomography system using a novel geom
使用新型几何体开发台式 X 射线荧光断层扫描系统
  • 批准号:
    8696114
  • 财政年份:
    2014
  • 资助金额:
    $ 39.21万
  • 项目类别:
Development of a benchtop x-ray fluorescence tomography system using a novel geom
使用新型几何体开发台式 X 射线荧光断层扫描系统
  • 批准号:
    9039591
  • 财政年份:
    2014
  • 资助金额:
    $ 39.21万
  • 项目类别:
X-Ray Fluorescence Computer Tomography with Emission Tomography Apertures
带发射断层扫描孔径的 X 射线荧光计算机断层扫描
  • 批准号:
    8142859
  • 财政年份:
    2010
  • 资助金额:
    $ 39.21万
  • 项目类别:
X-Ray Fluorescence Computer Tomography with Emission Tomography Apertures
带发射断层扫描孔径的 X 射线荧光计算机断层扫描
  • 批准号:
    7991291
  • 财政年份:
    2010
  • 资助金额:
    $ 39.21万
  • 项目类别:
Tailored Algorithms for Non-Contrast Computed Tomography Using Sinogram Restorati
使用正弦图恢复的非对比计算机断层扫描的定制算法
  • 批准号:
    7692256
  • 财政年份:
    2008
  • 资助金额:
    $ 39.21万
  • 项目类别:

相似海外基金

CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 39.21万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 39.21万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 39.21万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 39.21万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 39.21万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 39.21万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 39.21万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 39.21万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 39.21万
  • 项目类别:
    Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 39.21万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了