Multi-modal AO-LSO Phase Gradient Imaging of the Inner Retina
内视网膜多模态 AO-LSO 相位梯度成像
基本信息
- 批准号:9788095
- 负责人:
- 金额:$ 51.09万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-08-01 至 2022-08-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAlgorithmsAnatomyBackBiological MarkersBlood flowBurn injuryCellsClinicalClinical ResearchCollaborationsCollectionDataDetectionDevelopmentDiabetic RetinopathyDiagnosticDiseaseDocumentationEarEarly identificationEngineeringEvaluationEyeFutureGeneral PracticesGlaucomaGovernmentHumanImageImaging technologyInflammatoryLightingMedical centerModalityNerve DegenerationNerve FibersNeurodegenerative DisordersNeuronsNew YorkOphthalmologyOphthalmoscopesOphthalmoscopyOpticsPathologyPatientsPerformancePericytesPersonsPhasePhotophobiaPhotoreceptorsProcessResearchResearch PersonnelResolutionResourcesRetinaRetinalRetinal DiseasesRetinal Ganglion CellsSalesScanningSiteSpeedStructureSystemTestingTimeTissuesUnited States National Institutes of HealthWorkadaptive opticsadaptive optics scanning laser ophthalmoscopybasebiomarker identificationclinical applicationclinical careclinical imagingconfocal imagingdesignexperiencegene therapyhigh resolution imagingimagerimaging approachimaging capabilitiesimaging platformin vivoinsightinstrumentmultimodalityneuronal cell bodyneurovascularnext generationnovelnovel therapeuticsphase 1 testingphysical sciencepreservationprogramsprototypereceptorrelating to nervous systemresearch clinical testingretinal imagingretinal neuronsuccesssystems researchtime usetooltransmission process
项目摘要
Project Summary/Abstract
Physical Sciences Inc. (PSI) is continuing the pursuit of new clinical applications and advanced multimodal
capabilities for its novel retinal imaging technology based on an adaptive optics line-scanning ophthalmoscope
(AO-LSO). The Compact Adaptive Optics Retinal Imager (CAORI) eliminates high-speed scanning
components, reduces the clinical footprint compared to research adaptive optics scanning laser
ophthalmoscopes (AOSLO), and simplifies AO optical design while preserving the confocal advantage. In the
proposed Phase II program, PSI will incorporate a powerful new modality for phase gradient imaging (PGI) in
the inner retina. CAORI originally emphasized line-confocal imaging of photoreceptors in the outer retina in the
bright-field reflectance mode. However, in recent years, following the groundbreaking work of AOSLO
researchers, so-called “dark-field” and split-detection AOSLO modalities with various combinations of offset
detection apertures allow very subtle phase objects to be indirectly imaged in relatively transparent retinal
layers, including microvasculature and neural somas (cell bodies of retinal ganglion cells, for example). Such
features can used for early identification of new biomarkers in neurovascular and neurodegenerative conditions
such as diabetic retinopathy and glaucoma. In Phase I, PSI has proven that CAORI can be adapted, within the
same general line-confocal paradigm and footprint, for direct, sensitive, multi-aperture phase gradient imaging
(PGI) in the inner retina. In particular, a time domain integration (TDI) line-camera enables line-confocality of
the AO-LSO to be broadly adjusted, increasing collection aperture(s) without loss of image resolution (~2.4µm)
or light sensitivity. Simultaneous bright-field confocal ophthalmoscopy and a new type of oblique back-
illuminated line ophthalmoscopy for directly imaging inner retinal layers in transmission was demonstrated on a
single focal plane. Differencing pairs of inner retinal-focused TDI images (and videos) with complementary line
offsets produces phase gradient images—the line-field AO-LSO equivalent of split-detection AOSLO. PSI will
modify existing CAORI beta prototypes for PGI and begin clinical testing of these system in collaboration with
researchers at New York Eye and Ear Infirmary, Mount Sinai (diabetic retinopathy), and NYU Langone Medical
Center (glaucoma).
项目总结/文摘
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mircea Mujat其他文献
Mircea Mujat的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mircea Mujat', 18)}}的其他基金
Evaluation of photoreceptors health and function in diabetic retinopathy patients using a high-resolution retinal imaging device with controlled light stimulus
使用受控光刺激的高分辨率视网膜成像设备评估糖尿病视网膜病变患者的光感受器健康和功能
- 批准号:
10696696 - 财政年份:2023
- 资助金额:
$ 51.09万 - 项目类别:
Ultra-high speed AO-OCT clinical system to image ganglion cells and microglia
超高速 AO-OCT 临床系统对神经节细胞和小胶质细胞进行成像
- 批准号:
10547181 - 财政年份:2022
- 资助金额:
$ 51.09万 - 项目类别:
Ultra-high speed AO-OCT clinical system to image ganglion cells and microglia
超高速 AO-OCT 临床系统对神经节细胞和小胶质细胞进行成像
- 批准号:
10705315 - 财政年份:2022
- 资助金额:
$ 51.09万 - 项目类别:
Versatile Eye Tracking for Improved High-resolution Retinal Imaging
多功能眼动追踪可改善高分辨率视网膜成像
- 批准号:
10154113 - 财政年份:2021
- 资助金额:
$ 51.09万 - 项目类别:
Multispectral cellular-level retinal imaging for early detection of Alzheimer’s disease
用于早期检测阿尔茨海默病的多光谱细胞水平视网膜成像
- 批准号:
10323717 - 财政年份:2021
- 资助金额:
$ 51.09万 - 项目类别:
Comprehensive imaging and quantification of blood flow for investigating ocular diseases without additional contrast agent
无需额外造影剂即可对血流进行全面成像和量化以研究眼部疾病
- 批准号:
10295545 - 财政年份:2019
- 资助金额:
$ 51.09万 - 项目类别:
Comprehensive imaging and quantification of blood flow for investigating ocular diseases without additional contrast agent
无需额外造影剂即可对血流进行全面成像和量化以研究眼部疾病
- 批准号:
10349594 - 财政年份:2019
- 资助金额:
$ 51.09万 - 项目类别:
Measurement of Retinal Nerves and Blood Vessels as Markers for Type 1 Diabetes
测量视网膜神经和血管作为 1 型糖尿病的标志物
- 批准号:
9754819 - 财政年份:2017
- 资助金额:
$ 51.09万 - 项目类别:
Combined RCM and PSOCT for skin cancer imaging
结合 RCM 和 PSOCT 进行皮肤癌成像
- 批准号:
8534059 - 财政年份:2012
- 资助金额:
$ 51.09万 - 项目类别:
Combined RCM and PSOCT for skin cancer imaging
结合 RCM 和 PSOCT 进行皮肤癌成像
- 批准号:
8251261 - 财政年份:2012
- 资助金额:
$ 51.09万 - 项目类别:
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 51.09万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 51.09万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 51.09万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 51.09万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 51.09万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 51.09万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 51.09万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 51.09万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 51.09万 - 项目类别:
Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 51.09万 - 项目类别:
Research Grant














{{item.name}}会员




