Amniotic Membrane Derived Matrix for Large Bone Defect Repair
用于修复大骨缺损的羊膜衍生基质
基本信息
- 批准号:10019872
- 负责人:
- 金额:$ 24.58万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-07 至 2022-08-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAcuteAddressAllogenicAllograftingAnimalsAutologousBiocompatible MaterialsBone InjuryBone RegenerationBone TransplantationCell Differentiation processCellsCharacteristicsChronicCicatrixClinicalCollagenComplexDefectDoseEvolutionExcisionFamily suidaeFundingGAG GeneGeometryGoalsGoldGrowth FactorHumanImmune responseIn SituInflammatoryInflammatory ResponseInjuryKineticsLibrariesMandibleMediatingMembraneMesenchymal Stem CellsMineralsModelingMolecularNatural regenerationOryctolagus cuniculusOsteogenesisPatientsPhenotypePlacentaProcessPropertyProteinsRattusReceptor ActivationRegenerative MedicineScienceSeveritiesSignal PathwaySignal TransductionSiteSoft Tissue InjuriesSourceSpeedStem cellsStructureTechniquesTechnologyTissue EngineeringTissuesTraumaagedbasebonebone morphogenetic protein receptorsclinically relevantcraniomaxillofacialdefined contributiondesignhealingimmunoregulationimplantationimprovedin vivoin vivo regenerationinflammatory milieuinnovationinsightmacrophagemechanotransductionnovelnovel therapeuticsosteogenicrecruitregenerativerepairedresponsescaffoldsoft tissuetissue repairtumorwound
项目摘要
ABSTRACT
Craniomaxillofacial (CMF) defects present unique, unmet challenges to the field of tissue engineering.
Typically large in size and characterized by significant loss of hard- and soft-tissue, severe CMF defects are
prevalent after acute (tumor resection, trauma) and chronic (degenerative, infectious) injuries. We are
developing a collagen-based biomaterial to increase the quality and speed of bone regeneration as the
essential first step for creating advanced biomaterials for complex CMF defects. Autologous bone
transplantation remains the current gold-standard to repair structural CMF defects. However, limited access to
autologous bone, concerns with secondary wound site creation, the destructive impact of post-injury
inflammatory processes, and the irregular geometry of CMF defects motivate our efforts. Our long-term goal is
to demonstrate a biomaterial that actively instructs, rather than passively supports, osteogenic differentiation
and new bone formation using a patient's own mesenchymal stem cells (MSCs). However, while MSCs show
promise for aiding healing, inflammatory signals within the wound can significantly reduce their efficacy. Our
immediate objective is to demonstrate the innovative use of allogeneic tissue sources to create regeneration-
inducing biomaterials that address two critical hurdles: [1] promoting MSC-osteogenesis; and [2] altering the
kinetics of the M1-to-M2 macrophage transition through biomaterial design to further improve regeneration. We
have recently developed a mineralized collagen scaffold with significant potential for regenerative repair of
bone that can promote MSC osteogenesis in the absence of traditional growth factor supplements. Here we
will integrate matrix proteins derived from the amniotic membrane (AM), the innermost layer of the placenta
known to have significant immunomodulatory and anti-scarring properties, with this mineralized collagen
scaffold to create a bioactive composite. We hypothesize the mineralized CG-AM composite will enhance MSC
osteogenesis via endogenous BMPR activation and promote M2-like macrophage phenotype in response to
inflammatory challenge. In Aim 1 we will dissect the contribution of AM matrix on osteogenic differentiation and
inflammatory response within a mineralized collagen scaffold. In Aim 2 we will define the quality and kinetics of
CG-AM composite induced mandible bone regeneration. While decellularized AM has shown promise as a
stand-alone product for soft tissue repair, its significance as a bioactive component in 3D biomaterials has not
been extensively investigated. We employ a systematic means to incorporate AM-matrix into the CG
biomaterial to create a mineralized CG-AM composite, and then will define the contribution of the composite on
MSC osteogenic differentiation, macrophage activity, and mandible regeneration in a clinically relevant porcine
mandible defect model. Results derived here will significantly aid our ongoing efforts to design shelf-stable
biomaterials that can be used clinically to regenerate large craniomaxillofacial defects.
摘要
颅颌面部(CMF)缺损是组织工程领域面临的独特挑战。
严重的CMF缺损通常尺寸较大,其特征是硬组织和软组织的显著损失,
在急性(肿瘤切除、创伤)和慢性(变性、感染)损伤后普遍存在。我们
开发一种基于胶原蛋白的生物材料,以提高骨再生的质量和速度,
为复杂CMF缺陷创建先进生物材料的重要第一步。自体骨
移植仍然是目前修复结构性CMF缺陷的金标准。然而,有限的机会,
自体骨,与继发性伤口部位创建有关,损伤后的破坏性影响
炎症过程和CMF缺陷的不规则几何形状激发了我们的努力。我们的长期目标是
证明生物材料主动指导而不是被动支持成骨分化
以及使用患者自身的间充质干细胞(MSC)形成新骨。然而,尽管MSC显示
虽然有望帮助愈合,但伤口内的炎症信号可显著降低其功效。我们
近期目标是展示同种异体组织来源的创新用途,以创造再生-
诱导生物材料解决两个关键障碍:[1]促进MSC成骨;[2]改变
通过生物材料设计进一步改善再生的M1至M2巨噬细胞转变动力学。我们
最近开发了一种矿化胶原支架,具有再生修复的巨大潜力,
在没有传统生长因子补充剂的情况下可以促进MSC成骨的骨。这里我们
将整合来自羊膜(胎盘最内层)的基质蛋白
已知具有显著的免疫调节和抗瘢痕形成特性,
支架来制造生物活性复合材料。我们假设矿化的CG-AM复合物将增强MSC
通过内源性BMPR激活促进成骨,并促进M2样巨噬细胞表型,
炎症性挑战在目标1中,我们将剖析AM基质对成骨分化的贡献,
矿化胶原支架内的炎症反应。在目标2中,我们将定义
CG-AM复合物诱导下颌骨再生。虽然脱细胞AM已显示出作为一种
作为软组织修复的独立产品,其作为3D生物材料中的生物活性成分的重要性尚未得到证实。
进行了广泛的调查。我们采用了一种系统的方法,将AM矩阵纳入CG
生物材料,以创建一个矿化CG-AM复合材料,然后将定义的复合材料的贡献,
临床相关猪的MSC成骨分化、巨噬细胞活性和下颌骨再生
下颌骨缺损模型这里得出的结果将大大有助于我们正在进行的努力,设计货架稳定
生物材料,可用于临床再生大的颅颌面缺损。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Brendan A. Harley其他文献
Brendan A. Harley的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Brendan A. Harley', 18)}}的其他基金
Synthetic manipulation of engineered perivascular niches
工程化血管周围生态位的综合操纵
- 批准号:
10831221 - 财政年份:2023
- 资助金额:
$ 24.58万 - 项目类别:
Perivascular tissue models to overcome MGMT-mediated temozolomide resistance in glioblastoma
克服胶质母细胞瘤中 MGMT 介导的替莫唑胺耐药性的血管周围组织模型
- 批准号:
10818769 - 财政年份:2023
- 资助金额:
$ 24.58万 - 项目类别:
Perivascular tissue models to overcome MGMT-mediated temozolomide resistance in glioblastoma
克服胶质母细胞瘤中 MGMT 介导的替莫唑胺耐药性的血管周围组织模型
- 批准号:
10818804 - 财政年份:2023
- 资助金额:
$ 24.58万 - 项目类别:
Assembling granular stem cell niches using microdroplet hydrogels
使用微滴水凝胶组装颗粒干细胞生态位
- 批准号:
10390730 - 财政年份:2021
- 资助金额:
$ 24.58万 - 项目类别:
Assembling granular stem cell niches using microdroplet hydrogels
使用微滴水凝胶组装颗粒干细胞生态位
- 批准号:
10493341 - 财政年份:2021
- 资助金额:
$ 24.58万 - 项目类别:
Stratified and mechanically-tough biomaterial implant to improve tendon-to-bone enthesis regeneration
分层且机械坚固的生物材料植入物可改善肌腱到骨附着点的再生
- 批准号:
10666626 - 财政年份:2021
- 资助金额:
$ 24.58万 - 项目类别:
Mineralized collagen composite to accelerate craniofacial bone regeneration
矿化胶原复合物加速颅面骨再生
- 批准号:
10400873 - 财政年份:2021
- 资助金额:
$ 24.58万 - 项目类别:
Mineralized collagen composite to accelerate craniofacial bone regeneration
矿化胶原复合物加速颅面骨再生
- 批准号:
10606592 - 财政年份:2021
- 资助金额:
$ 24.58万 - 项目类别:
Gradient biomaterials to investigate niche regulation of hematopoiesis
梯度生物材料研究造血的生态位调节
- 批准号:
10413538 - 财政年份:2021
- 资助金额:
$ 24.58万 - 项目类别:
Mineralized collagen composite to accelerate craniofacial bone regeneration
矿化胶原复合物加速颅面骨再生
- 批准号:
10185367 - 财政年份:2021
- 资助金额:
$ 24.58万 - 项目类别:
相似海外基金
Acute senescence: a novel host defence counteracting typhoidal Salmonella
急性衰老:对抗伤寒沙门氏菌的新型宿主防御
- 批准号:
MR/X02329X/1 - 财政年份:2024
- 资助金额:
$ 24.58万 - 项目类别:
Fellowship
Transcriptional assessment of haematopoietic differentiation to risk-stratify acute lymphoblastic leukaemia
造血分化的转录评估对急性淋巴细胞白血病的风险分层
- 批准号:
MR/Y009568/1 - 财政年份:2024
- 资助金额:
$ 24.58万 - 项目类别:
Fellowship
Combining two unique AI platforms for the discovery of novel genetic therapeutic targets & preclinical validation of synthetic biomolecules to treat Acute myeloid leukaemia (AML).
结合两个独特的人工智能平台来发现新的基因治疗靶点
- 批准号:
10090332 - 财政年份:2024
- 资助金额:
$ 24.58万 - 项目类别:
Collaborative R&D
Cellular Neuroinflammation in Acute Brain Injury
急性脑损伤中的细胞神经炎症
- 批准号:
MR/X021882/1 - 财政年份:2024
- 资助金额:
$ 24.58万 - 项目类别:
Research Grant
KAT2A PROTACs targetting the differentiation of blasts and leukemic stem cells for the treatment of Acute Myeloid Leukaemia
KAT2A PROTAC 靶向原始细胞和白血病干细胞的分化,用于治疗急性髓系白血病
- 批准号:
MR/X029557/1 - 财政年份:2024
- 资助金额:
$ 24.58万 - 项目类别:
Research Grant
Combining Mechanistic Modelling with Machine Learning for Diagnosis of Acute Respiratory Distress Syndrome
机械建模与机器学习相结合诊断急性呼吸窘迫综合征
- 批准号:
EP/Y003527/1 - 财政年份:2024
- 资助金额:
$ 24.58万 - 项目类别:
Research Grant
FITEAML: Functional Interrogation of Transposable Elements in Acute Myeloid Leukaemia
FITEAML:急性髓系白血病转座元件的功能研究
- 批准号:
EP/Y030338/1 - 财政年份:2024
- 资助金额:
$ 24.58万 - 项目类别:
Research Grant
STTR Phase I: Non-invasive focused ultrasound treatment to modulate the immune system for acute and chronic kidney rejection
STTR 第一期:非侵入性聚焦超声治疗调节免疫系统以治疗急性和慢性肾排斥
- 批准号:
2312694 - 财政年份:2024
- 资助金额:
$ 24.58万 - 项目类别:
Standard Grant
ロボット支援肝切除術は真に低侵襲なのか?acute phaseに着目して
机器人辅助肝切除术真的是微创吗?
- 批准号:
24K19395 - 财政年份:2024
- 资助金额:
$ 24.58万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Collaborative Research: Changes and Impact of Right Ventricle Viscoelasticity Under Acute Stress and Chronic Pulmonary Hypertension
合作研究:急性应激和慢性肺动脉高压下右心室粘弹性的变化和影响
- 批准号:
2244994 - 财政年份:2023
- 资助金额:
$ 24.58万 - 项目类别:
Standard Grant